期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Equalized Electronegativity Based on the Valence Electrons and Its Application 被引量:2
1
作者 武亚新 曹晨忠 袁华 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期31-39,I0003,共10页
We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group e... We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties. 展开更多
关键词 electronegativity equalization Valence electrons equilibration method Molecular electronegativity group electronegativity Atomic charge
下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing 被引量:2
2
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups Enhanced MXene stability Trace NO_(2)sensing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部