The Group II chaperonin from Thermoplasma acidophilum was added to the in vitro amyloid fibrillation reaction of yeast Sup35NM protein to assess its effects. By measuring the formation of Sup35NM fibrils in real time ...The Group II chaperonin from Thermoplasma acidophilum was added to the in vitro amyloid fibrillation reaction of yeast Sup35NM protein to assess its effects. By measuring the formation of Sup35NM fibrils in real time using the fluorescent dye Thioflavin T, we found that the addition of T. acidophilum-cpn α16, α1, and β1 proteins suppressed fibril formation. Addition of a 0.1 molar-equivalent T. acidophilum-cpn α16 relative to Sup35NM prolonged the initial lag-time of fibril formation and decreased the rate of fibril extension. Addition of 1 or 3 molar-equivalents of T. acidophilum-cpn monomers also produced a similar effect. Delayed addition of these chaperonins after the initial lag phase did not suppress fibril formation. Interestingly, these effects were also observed upon adding only the apical domain segments of α and β-subunits, and we also found that deletion of the helical protrusion in the apical domain of these segments led to an abolishment of the suppression effects. A synthetic peptide whose sequence corresponded to the helical protrusion also displayed a suppression effect, which indicated that archaeal group II chaperonin binds to Sup35NM through the helical protrusion of the apical domain. These findings suggest that group II chaperonin might be actively involved in suppressing amyloid fibril formation, in addition to acting as a protein folding assistant.展开更多
We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I...We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I and 40 in HVS-II were found in Chinese Tu ethnic minority group mtDNA sequences, and 90 and 64 haplotypes were then defined. Haplotype diversity and the mean pairwise differences were 0.9903±0.0013 and 5.7785 in HVS-I, and 0.9777±0.0013 and 3.5819 in HVS-II, respectively. By analyzing the hypervariable domain from nucleotide 1,6180 to 1,6193 in HVS-I, we defined some new types of sequence variations. We also compared the relationship between Tu population and other populations using mtDNA HVS-I sequences. According to Rst genetic distances, the phylogenetic tree showed that the Tu population, the Xi'an Han population, the Chinese Korean, and the Mongol ethnic group were in a clade. This indicated a close genetic relationship between them. There were far relations between the Tu population and other Chinese southern Han populations, Siberian, European, African, and other foreign populations. The results suggest that Tu population has a multi-origin and has also merged with other local populations.展开更多
Bafia Group is part of the southernmost portion of the Central African Fold Belt (CAFB) in Cameroon. The geological feature of the group is characterized by the presence of metamorphic rocks in which tourmaline had be...Bafia Group is part of the southernmost portion of the Central African Fold Belt (CAFB) in Cameroon. The geological feature of the group is characterized by the presence of metamorphic rocks in which tourmaline had been recognized among accessory minerals. In the present study, attention is focus on the tourmaline bearing quartzite to the southeast of Kombé II. Structure refinement shows that tourmaline is a Fe-dravite with the formula X(Na<sub>0.95</sub>[]<sub>0.05</sub>)Y(Mg<sub>2.39</sub>Fe<sub>0.61</sub>)Z(Al<sub>5.10</sub>Mg<sub>0.90</sub>)(BO<sub>3</sub>)<sub>3</sub>T[Si<sub>6</sub>O<sub>18</sub>](OH)<sub>3</sub>[(O,OH)<sub>0.88</sub>F<sub>0.12</sub>]. The Fe-dravite is hosted in a Ca-poor quartzite, which is made up, in addition to quartz and tourmaline, of biotite and muscovite. The structure of the dravites shows a low vacancy at the X site, which militates for a crystallization of the tourmaline at a high temperature > 750℃. This is in agreement with previous work which shows that the metamorphic peak in the associated biotite gneiss reaches 825℃. The R1 value of 1.24% means that the crystal structure of the tourmalines is of high quality. The genetical link between gold mineralization and tourmaline should stimulate exploration interest in the study area.展开更多
An alkaline earth metal-organic framework [Ba(Hsip)(H2O)4]n (1, NaH2sip = 5-sulfoisophthalic acid sodium) has been constructed, and characterized by single-crystal X-ray diffraction. In complex 1, each Ba(II) ...An alkaline earth metal-organic framework [Ba(Hsip)(H2O)4]n (1, NaH2sip = 5-sulfoisophthalic acid sodium) has been constructed, and characterized by single-crystal X-ray diffraction. In complex 1, each Ba(II) atom coordinates to one ligand Hsip3- and four water molecules with a distorted nine-coordinated monocapped tetragonal antiprism geometry. Each Hsip2- anion acts as a μ3-bridging ligand, in which two carboxylate groups adopt the same bidentate chelating coordinating model and the sulfonate group takes a monodentate coordinating model, resulting in a wave-like two-dimensional network with a (6, 3) topological structure. The two-dimensional networks are further linked by O–H···O to form a three-dimensional structure. Luminescent property and thermal stability of complex 1 are investigated. 1 belongs to the orthorhombic system, space group Pna21 with a = 7.3333(2), b = 16.7044(3), c = 10.4817(2), Z = 4, V = 1283.99(5)3, Mr = 453.58, Dc = 2.346 g/cm3, F(000) = 880, μ = 3.314 mm–1, the final R = 0.0261 and wR = 0.0592 for 2425 observed reflections with I 2σ(I).展开更多
文摘The Group II chaperonin from Thermoplasma acidophilum was added to the in vitro amyloid fibrillation reaction of yeast Sup35NM protein to assess its effects. By measuring the formation of Sup35NM fibrils in real time using the fluorescent dye Thioflavin T, we found that the addition of T. acidophilum-cpn α16, α1, and β1 proteins suppressed fibril formation. Addition of a 0.1 molar-equivalent T. acidophilum-cpn α16 relative to Sup35NM prolonged the initial lag-time of fibril formation and decreased the rate of fibril extension. Addition of 1 or 3 molar-equivalents of T. acidophilum-cpn monomers also produced a similar effect. Delayed addition of these chaperonins after the initial lag phase did not suppress fibril formation. Interestingly, these effects were also observed upon adding only the apical domain segments of α and β-subunits, and we also found that deletion of the helical protrusion in the apical domain of these segments led to an abolishment of the suppression effects. A synthetic peptide whose sequence corresponded to the helical protrusion also displayed a suppression effect, which indicated that archaeal group II chaperonin binds to Sup35NM through the helical protrusion of the apical domain. These findings suggest that group II chaperonin might be actively involved in suppressing amyloid fibril formation, in addition to acting as a protein folding assistant.
文摘We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I and 40 in HVS-II were found in Chinese Tu ethnic minority group mtDNA sequences, and 90 and 64 haplotypes were then defined. Haplotype diversity and the mean pairwise differences were 0.9903±0.0013 and 5.7785 in HVS-I, and 0.9777±0.0013 and 3.5819 in HVS-II, respectively. By analyzing the hypervariable domain from nucleotide 1,6180 to 1,6193 in HVS-I, we defined some new types of sequence variations. We also compared the relationship between Tu population and other populations using mtDNA HVS-I sequences. According to Rst genetic distances, the phylogenetic tree showed that the Tu population, the Xi'an Han population, the Chinese Korean, and the Mongol ethnic group were in a clade. This indicated a close genetic relationship between them. There were far relations between the Tu population and other Chinese southern Han populations, Siberian, European, African, and other foreign populations. The results suggest that Tu population has a multi-origin and has also merged with other local populations.
文摘Bafia Group is part of the southernmost portion of the Central African Fold Belt (CAFB) in Cameroon. The geological feature of the group is characterized by the presence of metamorphic rocks in which tourmaline had been recognized among accessory minerals. In the present study, attention is focus on the tourmaline bearing quartzite to the southeast of Kombé II. Structure refinement shows that tourmaline is a Fe-dravite with the formula X(Na<sub>0.95</sub>[]<sub>0.05</sub>)Y(Mg<sub>2.39</sub>Fe<sub>0.61</sub>)Z(Al<sub>5.10</sub>Mg<sub>0.90</sub>)(BO<sub>3</sub>)<sub>3</sub>T[Si<sub>6</sub>O<sub>18</sub>](OH)<sub>3</sub>[(O,OH)<sub>0.88</sub>F<sub>0.12</sub>]. The Fe-dravite is hosted in a Ca-poor quartzite, which is made up, in addition to quartz and tourmaline, of biotite and muscovite. The structure of the dravites shows a low vacancy at the X site, which militates for a crystallization of the tourmaline at a high temperature > 750℃. This is in agreement with previous work which shows that the metamorphic peak in the associated biotite gneiss reaches 825℃. The R1 value of 1.24% means that the crystal structure of the tourmalines is of high quality. The genetical link between gold mineralization and tourmaline should stimulate exploration interest in the study area.
基金supported by the University Science Foundation of Anhui Province (No. KJ2011Z271)the Applied Chemistry Key Constructing Subject of Anhui Province (No. 200802187C)
文摘An alkaline earth metal-organic framework [Ba(Hsip)(H2O)4]n (1, NaH2sip = 5-sulfoisophthalic acid sodium) has been constructed, and characterized by single-crystal X-ray diffraction. In complex 1, each Ba(II) atom coordinates to one ligand Hsip3- and four water molecules with a distorted nine-coordinated monocapped tetragonal antiprism geometry. Each Hsip2- anion acts as a μ3-bridging ligand, in which two carboxylate groups adopt the same bidentate chelating coordinating model and the sulfonate group takes a monodentate coordinating model, resulting in a wave-like two-dimensional network with a (6, 3) topological structure. The two-dimensional networks are further linked by O–H···O to form a three-dimensional structure. Luminescent property and thermal stability of complex 1 are investigated. 1 belongs to the orthorhombic system, space group Pna21 with a = 7.3333(2), b = 16.7044(3), c = 10.4817(2), Z = 4, V = 1283.99(5)3, Mr = 453.58, Dc = 2.346 g/cm3, F(000) = 880, μ = 3.314 mm–1, the final R = 0.0261 and wR = 0.0592 for 2425 observed reflections with I 2σ(I).