Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing....Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.展开更多
In this work, two new dyes YK-1 and YK-2 with carboxylic acid and hydroxamic acid as anchoring groups,respectively, in combination with diphenylamine as donor and perylenemonoimide as acceptor were synthesized and app...In this work, two new dyes YK-1 and YK-2 with carboxylic acid and hydroxamic acid as anchoring groups,respectively, in combination with diphenylamine as donor and perylenemonoimide as acceptor were synthesized and applied in p-type dye-sensitized solar cells(p-DSCs) and dye-sensitized photoelectrochemical cells(PEC). The results showed that the sensitizer(YK-1) based on carboxylic acid displayed a higher conversion efficiency of 0.064% under AM 1.5 solar conditions in p-DSCs. However, it was interesting that the hydroxamic acid based sensitizer(YK-2) on Ni O photocathode displayed better performance in a hydrophilic environment over a broad p H range under visible-light irradiation because of a versatile covalent attachment to Ni O surfaces. This may be ascribed to hydroxamic acid anchors, which have more sites interacting with the surface of Ni O in aqueous solution. This study demonstrates that YK-2 containing hydroxamic acid anchoring group is a promising candidate to achieve highly efficient and stable activity for dye-sensitized PEC system.展开更多
First of all the pre-stress group anchor ropes are resolved into two sub-systems: the stable rock stand lateral resistance load and inner bonding section stand lateral resistance load and pre-stress load. Then, discre...First of all the pre-stress group anchor ropes are resolved into two sub-systems: the stable rock stand lateral resistance load and inner bonding section stand lateral resistance load and pre-stress load. Then, discretization of every sub-system was carried on and it is assumed that different micro-sections possess uniform distribution side resistance. On the basis of Mindlin stress solution, stress overlay principle, modified layered-summation method as well as the load transfer method, we study the anchor group effect and present a theory model which calculates the anchor group effect and establishes the relevant iterate standard.展开更多
基金financial support from the National Natural Science Foundation of China (NSFC)(21805128)the National Natural Science Foundation of China (21774055)+3 种基金the financial support from the National Natural Science Foundation of China(21975260)the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)financial support of Guangdong Provincial Key Laboratory Program(2021B1212040001) from the Department of Science and Technology of Guangdong Provincethe NSFC-CNR exchange program of NSFC(22011530391)。
文摘Self-assembled molecules(SAMs) have shown great potential in replacing bulk charge selective contact layers in high-performance perovskite solar cells(PSCs) due to their low material consumption and simple processing. Herein, we design and synthesize a series of donor-acceptor(D-A) type SAMs(MPA-BTCA, MPA-BT-BA, and MPA-BT-RA, where MPA is 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline;BT is benzo[c][1,2,5]-thiadiazole;CA is 2-cyanoacrylic acid, BA is benzoic acid, RA is rhodanine-3-propionic acid) with distinct anchoring groups, which show dramatically different properties. MPA-BTCA with CA anchoring groups exhibited stronger dipole moments and formed a homogeneous monolayer on the indium tin oxide(ITO) surface by adopting an upstanding self-assembling mode. However, the MPA-BT-RA molecules tend to aggregate severely in solid state due to the sp~3 hybridization of the carbon atom on the RA group, which is not favorable for achieving a long-range ordered self-assembled layer.Consequently, benefiting from high dipole moment, as well as dense and uniform self-assembled film,the device based on MPA-BT-CA yielded a remarkable power conversion efficiency(PCE) of 21.81%.Encouragingly, an impressive PCE approaching 20% can still be obtained for the MPA-BT-CA-based PSCs as the device area is increased to 0.80 cm^(2). Our work sheds light on the design principles for developing hole selecting SAMs, which will pave a way for realizing highly efficient, flexible, and large-area PSCs.
基金supported by the National Natural Science Foundation of China (21372082, 21421004, 21772040 and 21572062)the Fundamental Research Funds for the Central Universities (222201717003)the Programme of Introducing Talents of Discipline to Universities (B16017)
文摘In this work, two new dyes YK-1 and YK-2 with carboxylic acid and hydroxamic acid as anchoring groups,respectively, in combination with diphenylamine as donor and perylenemonoimide as acceptor were synthesized and applied in p-type dye-sensitized solar cells(p-DSCs) and dye-sensitized photoelectrochemical cells(PEC). The results showed that the sensitizer(YK-1) based on carboxylic acid displayed a higher conversion efficiency of 0.064% under AM 1.5 solar conditions in p-DSCs. However, it was interesting that the hydroxamic acid based sensitizer(YK-2) on Ni O photocathode displayed better performance in a hydrophilic environment over a broad p H range under visible-light irradiation because of a versatile covalent attachment to Ni O surfaces. This may be ascribed to hydroxamic acid anchors, which have more sites interacting with the surface of Ni O in aqueous solution. This study demonstrates that YK-2 containing hydroxamic acid anchoring group is a promising candidate to achieve highly efficient and stable activity for dye-sensitized PEC system.
文摘First of all the pre-stress group anchor ropes are resolved into two sub-systems: the stable rock stand lateral resistance load and inner bonding section stand lateral resistance load and pre-stress load. Then, discretization of every sub-system was carried on and it is assumed that different micro-sections possess uniform distribution side resistance. On the basis of Mindlin stress solution, stress overlay principle, modified layered-summation method as well as the load transfer method, we study the anchor group effect and present a theory model which calculates the anchor group effect and establishes the relevant iterate standard.