Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the ...The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi-time points and multi-indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.展开更多
The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the ...The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the Electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi time points and multi indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the Multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.展开更多
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen...According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper...Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper proposes a new multiattribute group decision making method based on Pythagorean uncertain linguistic variable Hamy mean(PULVHM) operator and VIKOR method. Firstly, we define operation rules and a new aggregation operator of Pythagorean uncertain linguistic variable(PULV) and explore some properties of the operator.Secondly, taking the decision makers' hesitation degree into account, a new score function is defined, and we further develop a new group decision making approach integrated with VIKOR method. Finally, an investment example is demonstrated to elaborate the validity of the proposed method. Sensibility analysis and comprehensive comparisons with another two methods are performed to show the stability and advantage of our method.展开更多
For group decision-making problems with linguistic assessment information, a new method based on two-tuple and WC-OWA operator is proposed, in which the criteria's weights and the decision-makers' preference informa...For group decision-making problems with linguistic assessment information, a new method based on two-tuple and WC-OWA operator is proposed, in which the criteria's weights and the decision-makers' preference information might take the form of linguistic grade, or might be between two continuous linguistic grades, or might be linguistic interval, or might be default. In this method, all linguistic values are transformed into two-tuple, and an aggregative decision-making matrix is obtained by using interval operation. The group aggregative values of each criterion on alternatives are computed by using a WC-OWA operator, the aggregative values on alternatives are worked out, and transformed into two-tuple. And the rank of the alternatives is obtained by using the order property of two-tuple. An example shows the feasibility and effectiveness of the proposed method.展开更多
Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alter...Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The appl...The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two- parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge-Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.展开更多
For the problems of the consistency ranking of the group decision-making scheme,from the view of group negotiation and system coordination,the grey incidence analysis and Nash bargaining model are used to establish a ...For the problems of the consistency ranking of the group decision-making scheme,from the view of group negotiation and system coordination,the grey incidence analysis and Nash bargaining model are used to establish a consistency group decision-making method.First,the concepts of the consensus partial decision-making program and the consensus overall ideal decision-making program are defined,and then a multi-object optimization model is constructed based on the satisfaction maximization of group negotiation and deviation minimization of system coordination to determine the consensus partial decision-making program and the consensus overall ideal decision-making program.Moreover,the grey incidence analysis is exploited to measure the close degrees between them.Finally,a real case of the online product evaluation verifies the validity and rationality of the proposed model.展开更多
We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition a...We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.展开更多
Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative ...Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
文摘The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi-time points and multi-indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.
文摘The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the Electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi time points and multi indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the Multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.
文摘According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金supported by the National Natural Science Foundation of China(61402260,61473176)Taishan Scholar Project of Shandong Province(TSQN201812092)
文摘Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper proposes a new multiattribute group decision making method based on Pythagorean uncertain linguistic variable Hamy mean(PULVHM) operator and VIKOR method. Firstly, we define operation rules and a new aggregation operator of Pythagorean uncertain linguistic variable(PULV) and explore some properties of the operator.Secondly, taking the decision makers' hesitation degree into account, a new score function is defined, and we further develop a new group decision making approach integrated with VIKOR method. Finally, an investment example is demonstrated to elaborate the validity of the proposed method. Sensibility analysis and comprehensive comparisons with another two methods are performed to show the stability and advantage of our method.
基金the Key Project of National Natural Science Foundation of China (70631004)the National Natural Science Foundation of China (70771115)
文摘For group decision-making problems with linguistic assessment information, a new method based on two-tuple and WC-OWA operator is proposed, in which the criteria's weights and the decision-makers' preference information might take the form of linguistic grade, or might be between two continuous linguistic grades, or might be linguistic interval, or might be default. In this method, all linguistic values are transformed into two-tuple, and an aggregative decision-making matrix is obtained by using interval operation. The group aggregative values of each criterion on alternatives are computed by using a WC-OWA operator, the aggregative values on alternatives are worked out, and transformed into two-tuple. And the rank of the alternatives is obtained by using the order property of two-tuple. An example shows the feasibility and effectiveness of the proposed method.
基金supported by the Humanities and Social Sciences Foundation of Ministry of Education of China(09YJC630229)Scientific Research Foundation of Guangxi University for Nationalities for Talent Introduction(200702YZ01)Science and Technology Project of State Ethnic Affairs Commission(09GX03)
文摘Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
文摘The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two- parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge-Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.
基金supported by the National Natural Science Foundation of China(71503103)the Humanities and Social Sciences of Education Ministry(17YJC640233)+4 种基金the Jiangsu Province University Philosophy and Social Sciences for Key Research Program(2017ZDIXM034)the Soft Science Foundation of Jiangsu Province(BR2018005)the Natural Science Foundation of Jiangsu Province(BK20150157)the Fundamental Research Funds for the Central Universities(2019JDZD06)the Key Soft Science Foundation of Wuxi(KX-18-B01)
文摘For the problems of the consistency ranking of the group decision-making scheme,from the view of group negotiation and system coordination,the grey incidence analysis and Nash bargaining model are used to establish a consistency group decision-making method.First,the concepts of the consensus partial decision-making program and the consensus overall ideal decision-making program are defined,and then a multi-object optimization model is constructed based on the satisfaction maximization of group negotiation and deviation minimization of system coordination to determine the consensus partial decision-making program and the consensus overall ideal decision-making program.Moreover,the grey incidence analysis is exploited to measure the close degrees between them.Finally,a real case of the online product evaluation verifies the validity and rationality of the proposed model.
文摘We consider Hardy spaces with variable exponents defined by grand maximal function on the Heisenberg group. Then we introduce some equivalent characterizations of variable Hardy spaces. By using atomic decomposition and molecular decomposition we get the boundedness of singular integral operators on variable Hardy spaces. We investigate the Littlewood-Paley characterization by virtue of the boundedness of singular integral operators.
基金supported by the National Natural Science Foundation of China(Nos.71740021,11861034,and 61966030)the Humanities Social Science Programming Project of Ministry of Education of China(No.20YJA630059)+1 种基金the Natural Science Foundation of Jiangxi Province of China(No.20192BAB207012)the Natural Science Foundation of Qinghai Province of China(No.2019-ZJ-7086).
文摘Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.