It is shown that if a 'max-subadditive funtional' p(x) defined on some symmetric neighborhood U0 of zero vector θ in a 'b.f.-toplological group' X is 'upper semi-cotinuous' at a point x0 ∈ U0...It is shown that if a 'max-subadditive funtional' p(x) defined on some symmetric neighborhood U0 of zero vector θ in a 'b.f.-toplological group' X is 'upper semi-cotinuous' at a point x0 ∈ U0, or 'lower semi-continuous' in some neighborhood V(x0) U0 and X is of second category; then p(x) can attain its supremum in U0. And there is a similar conclusion for the γ-max-subadditive functional when its supremum is 0 and if U0 is 'pseudo-bounded' set in X.展开更多
在相对速度空间建立中子引发裂变链概率所满足的与时间相关的微分-积分方程,基于多群SN方法开发动态数值程序(Dynamic Segment Number Probability,DSNP),分析了动态计算的收敛性,并对动态系统的裂变链概率演化过程进行数值模拟。模拟...在相对速度空间建立中子引发裂变链概率所满足的与时间相关的微分-积分方程,基于多群SN方法开发动态数值程序(Dynamic Segment Number Probability,DSNP),分析了动态计算的收敛性,并对动态系统的裂变链概率演化过程进行数值模拟。模拟计算表明,DSNP程序与Partisn程序的计算结果均一致;临界状态附近存在大量的有限裂变链,使得引发概率的动态演化结果高于稳态计算结果,在Baker动态流场模型上,第一临界点后1μs的范围内计算结果最大差异约为300%。随着裂变系统反应性增加,有限裂变链的贡献逐渐减弱,持续裂变链占优,引发概率的动态演化曲线与稳态结果逐渐重合,差别小于5%,表明系统中子引发自持裂变的能力趋于稳定,此时动态引发概率的时间积分结果比稳态结果高5%-35%。高浓铀模型上的数值模拟验证了DSNP程序的准确性,该程序可定量计算动态系统的引发概率,相对于稳态方法,DSNP程序能够更为准确地描述裂变系统点火概率的演化过程。展开更多
It is shown that the famous Banach-Steinhaus theorem can be generalized to some families of nonlinear functionals defined on some topological groups and topological vector space, e.g. the F-spaced lβ(0 <β < 1)...It is shown that the famous Banach-Steinhaus theorem can be generalized to some families of nonlinear functionals defined on some topological groups and topological vector space, e.g. the F-spaced lβ(0 <β < 1) and S[a, b].展开更多
文摘It is shown that if a 'max-subadditive funtional' p(x) defined on some symmetric neighborhood U0 of zero vector θ in a 'b.f.-toplological group' X is 'upper semi-cotinuous' at a point x0 ∈ U0, or 'lower semi-continuous' in some neighborhood V(x0) U0 and X is of second category; then p(x) can attain its supremum in U0. And there is a similar conclusion for the γ-max-subadditive functional when its supremum is 0 and if U0 is 'pseudo-bounded' set in X.
文摘在相对速度空间建立中子引发裂变链概率所满足的与时间相关的微分-积分方程,基于多群SN方法开发动态数值程序(Dynamic Segment Number Probability,DSNP),分析了动态计算的收敛性,并对动态系统的裂变链概率演化过程进行数值模拟。模拟计算表明,DSNP程序与Partisn程序的计算结果均一致;临界状态附近存在大量的有限裂变链,使得引发概率的动态演化结果高于稳态计算结果,在Baker动态流场模型上,第一临界点后1μs的范围内计算结果最大差异约为300%。随着裂变系统反应性增加,有限裂变链的贡献逐渐减弱,持续裂变链占优,引发概率的动态演化曲线与稳态结果逐渐重合,差别小于5%,表明系统中子引发自持裂变的能力趋于稳定,此时动态引发概率的时间积分结果比稳态结果高5%-35%。高浓铀模型上的数值模拟验证了DSNP程序的准确性,该程序可定量计算动态系统的引发概率,相对于稳态方法,DSNP程序能够更为准确地描述裂变系统点火概率的演化过程。
文摘It is shown that the famous Banach-Steinhaus theorem can be generalized to some families of nonlinear functionals defined on some topological groups and topological vector space, e.g. the F-spaced lβ(0 <β < 1) and S[a, b].