This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelera...This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelerated rectilinear motion in the same radar beam. First, range curvature and range walk of each sub-target among group targets are corrected by the second-order KT combined with the quadratic phase term compensation. After range alignment, the signals in each range frequency cell can be modelled as multiple chirp signals and then the Sandglass transform is utilized to cross-range imaging, which transforms the time–frequency distribution of the signals in each range frequency cell into beelines parallel to the slow time axis simultaneously. Finally, cross-range profiles of group targets in each range frequency cell are obtained via a projection of the perk of every scatterer in the two-dimensional accumulation plane onto the frequency axis. The advantage of the proposed method is that it can align range profiles of each sub-target simultaneously and image cross-range profiles directly without separating the returned signals, which simplifies the operation procedure. Simulation results are used to demonstrate the effectiveness of the proposed method.展开更多
When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performanc...When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.展开更多
A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for...A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for target discrimination based on voting mechanism. Finally, Target groups are extracted. The results of experiments show the validity of this algorithm.展开更多
In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it i...In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.展开更多
Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to g...Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.展开更多
The Jiangsu Hubao Group, now very active in the garment sector, used to be a small shirt factory with a loaned capital of only a few hundred thousand yuan(RMB). Since its founding in 1989, the group has been aiming at...The Jiangsu Hubao Group, now very active in the garment sector, used to be a small shirt factory with a loaned capital of only a few hundred thousand yuan(RMB). Since its founding in 1989, the group has been aiming at the international first-class level, and has formulated and implemented international famous brand strategy, with quality products occupying the market. After展开更多
With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-...With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-based directed energy weapon formations,space-based kinetic energy weapon formations,and sea-based carrier-based formations have become the trump card for winning future wars.In a complex confrontation environment,these sophisticated weapon formation systems can precisely strike mobile threat group targets,making them extreme deterrents in joint combat applications.Based on this,first,this paper provides a comprehensive summary of the outstanding advantages,strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare.Second,a detailed analysis of the technological breakthroughs in four key areas,situational awareness,heterogeneous coordination,mixed combat,and intelligent assessment of typical unmanned aerial vehicle(UAV)swarms in joint warfare,is presented.An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control.Then,an indepth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control.Finally,the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.展开更多
The slogan "Sport for All" as a program of TAFISA (The Association For International Sport for All) is an invitation for all target groups and target persons in all societies worldwide to be active in sports, to o...The slogan "Sport for All" as a program of TAFISA (The Association For International Sport for All) is an invitation for all target groups and target persons in all societies worldwide to be active in sports, to organize and to create sport activities with a variety of aims. Integration and inclusion are strategies to open the world of sports for people with disabilities or a migrant background as well. Families, politics, the management within companies and all citizens are in responsibility. The development of Sport for All depends on various dimensions, e.g. the different kinds of sport, target groups and aims/motives.展开更多
A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group targe...A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group target, split models of group targets are established based on a sliding window feedback mechanism to determine the occurrence and classification of split maneuvering, which makes the tracked objects focus by group members effectively. The track of an outlier single target is reconstructed by the sequential least square method. At the same time, the relationship between the group members is expressed by the complex domain topological description method, which solves the problem of point-track association between the members. The Singer method is then used to update the tracks. Compared with classical multi-target tracking algorithms based on Multiple Hypothesis Tracking (MHT) and the Different Structure Joint Probabilistic Data Association (DS-JPDA) algorithm, the proposed algorithm has better tracking accuracy and stability, is robust against environmental clutter and has stable time-consumption under both classical radar conditions and partly resolvable conditions.展开更多
The 10000 t/a high purity aluminum engineering project in Baise Mining Group’s Coal-power-aluminum Integration Project started construction at Tianyang Xinshan Aluminum Industrial Park.Following the successful produc...The 10000 t/a high purity aluminum engineering project in Baise Mining Group’s Coal-power-aluminum Integration Project started construction at Tianyang Xinshan Aluminum Industrial Park.Following the successful production launching of Baise Mining Group’s Coal-power-aluminum Integration Xinshan Project-Phase I2×350MW coal-fired unit self supply展开更多
基金supported by the National Natural Science Foundation of China (No. 61372159)
文摘This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelerated rectilinear motion in the same radar beam. First, range curvature and range walk of each sub-target among group targets are corrected by the second-order KT combined with the quadratic phase term compensation. After range alignment, the signals in each range frequency cell can be modelled as multiple chirp signals and then the Sandglass transform is utilized to cross-range imaging, which transforms the time–frequency distribution of the signals in each range frequency cell into beelines parallel to the slow time axis simultaneously. Finally, cross-range profiles of group targets in each range frequency cell are obtained via a projection of the perk of every scatterer in the two-dimensional accumulation plane onto the frequency axis. The advantage of the proposed method is that it can align range profiles of each sub-target simultaneously and image cross-range profiles directly without separating the returned signals, which simplifies the operation procedure. Simulation results are used to demonstrate the effectiveness of the proposed method.
文摘When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods.
文摘A successful algorithm for detecting target groups is presented. Firstly, A global Constant False Alarm Rate (CFAR) detector is utilized to locate the potential target regions, and then the features are com- puted for target discrimination based on voting mechanism. Finally, Target groups are extracted. The results of experiments show the validity of this algorithm.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.60835001)the National Natural Science Foundation of China(Grant No.61104068)the Natural Science Foundation of Jiangsu Province China(Grant No.BK2010200)
文摘In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140875)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213084)the National Natural Science Foundation of China(Grant No.61502243)
文摘Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.
文摘The Jiangsu Hubao Group, now very active in the garment sector, used to be a small shirt factory with a loaned capital of only a few hundred thousand yuan(RMB). Since its founding in 1989, the group has been aiming at the international first-class level, and has formulated and implemented international famous brand strategy, with quality products occupying the market. After
基金the Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0075,2022JM-395).
文摘With the rapid development of informatization,autonomy and intelligence,unmanned swarm formation intelligent operations will become the main combat mode of future wars.Typical unmanned swarm formations such as ground-based directed energy weapon formations,space-based kinetic energy weapon formations,and sea-based carrier-based formations have become the trump card for winning future wars.In a complex confrontation environment,these sophisticated weapon formation systems can precisely strike mobile threat group targets,making them extreme deterrents in joint combat applications.Based on this,first,this paper provides a comprehensive summary of the outstanding advantages,strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare.Second,a detailed analysis of the technological breakthroughs in four key areas,situational awareness,heterogeneous coordination,mixed combat,and intelligent assessment of typical unmanned aerial vehicle(UAV)swarms in joint warfare,is presented.An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control.Then,an indepth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control.Finally,the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.
文摘The slogan "Sport for All" as a program of TAFISA (The Association For International Sport for All) is an invitation for all target groups and target persons in all societies worldwide to be active in sports, to organize and to create sport activities with a variety of aims. Integration and inclusion are strategies to open the world of sports for people with disabilities or a migrant background as well. Families, politics, the management within companies and all citizens are in responsibility. The development of Sport for All depends on various dimensions, e.g. the different kinds of sport, target groups and aims/motives.
基金co-supported by the National Natural Science Foundation of China(Nos.61471383,61531020,61471379 and 61102166)
文摘A group tracking algorithm for split maneuvering based on complex domain topological descriptions is proposed for the tracking of members in a maneuvering group. According to the split characteristics of a group target, split models of group targets are established based on a sliding window feedback mechanism to determine the occurrence and classification of split maneuvering, which makes the tracked objects focus by group members effectively. The track of an outlier single target is reconstructed by the sequential least square method. At the same time, the relationship between the group members is expressed by the complex domain topological description method, which solves the problem of point-track association between the members. The Singer method is then used to update the tracks. Compared with classical multi-target tracking algorithms based on Multiple Hypothesis Tracking (MHT) and the Different Structure Joint Probabilistic Data Association (DS-JPDA) algorithm, the proposed algorithm has better tracking accuracy and stability, is robust against environmental clutter and has stable time-consumption under both classical radar conditions and partly resolvable conditions.
文摘The 10000 t/a high purity aluminum engineering project in Baise Mining Group’s Coal-power-aluminum Integration Project started construction at Tianyang Xinshan Aluminum Industrial Park.Following the successful production launching of Baise Mining Group’s Coal-power-aluminum Integration Xinshan Project-Phase I2×350MW coal-fired unit self supply