Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
The simplified neutrosophic set(SNS) is a useful generalization of the fuzzy set that is designed for some practical situations in which each element has different truth membership function, indeterminacy membership f...The simplified neutrosophic set(SNS) is a useful generalization of the fuzzy set that is designed for some practical situations in which each element has different truth membership function, indeterminacy membership function and falsity membership function. In this paper, we develop a series of power aggregation operators called simplified neutrosophic number power weighted averaging(SNNPWA) operator, simplified neutrosophic number power weighted geometric(SNNPWG) operator, simplified neutrosophic number power ordered weighted averaging(SNNPOWA) operator and simplified neutrosophic number power ordered weighted geometric(SNNPOWG) operator. We present some useful properties of the operators and discuss the relationships among them. Moreover, an approach to multiattribute group decision making(MAGDM) within the framework of SNSs is developed by the above aggregation operators.Finally, a practical application of the developed approach to deal with the problem of investment is given, and the result shows that our approach is reasonable and effective in dealing with uncertain decision making problems.展开更多
Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper...Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper proposes a new multiattribute group decision making method based on Pythagorean uncertain linguistic variable Hamy mean(PULVHM) operator and VIKOR method. Firstly, we define operation rules and a new aggregation operator of Pythagorean uncertain linguistic variable(PULV) and explore some properties of the operator.Secondly, taking the decision makers' hesitation degree into account, a new score function is defined, and we further develop a new group decision making approach integrated with VIKOR method. Finally, an investment example is demonstrated to elaborate the validity of the proposed method. Sensibility analysis and comprehensive comparisons with another two methods are performed to show the stability and advantage of our method.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguis...Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.展开更多
A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procur...A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.展开更多
Demand uncertainty is a key factor for the seller's decision making, especially in the e-business environment, for the website to sell products through the online auction. In this paper, two kinds of demand uncert...Demand uncertainty is a key factor for the seller's decision making, especially in the e-business environment, for the website to sell products through the online auction. In this paper, two kinds of demand uncertainties are considered: the consumer regime uncertainty and the inherent randomness of the market environment. Then, how to use a novel business model and group-buying auction (GBA) is analyzed in such a market environment. Based on the comparison of the GBA and the posted price mechanism, some conditions that favor the GBA are provided.展开更多
To eliminate computational problems involved in evaluating multi-attribute bids with differentmeasures,this article first normalizes each individual component of a bid,and then makes use ofthe weighted product method ...To eliminate computational problems involved in evaluating multi-attribute bids with differentmeasures,this article first normalizes each individual component of a bid,and then makes use ofthe weighted product method to present a new scoring function that converts each bid into a score.Twokinds of multi-attribute auction models are introduced in terms of scoring rules and bidding objectivefunctions.Equilibrium bidding strategies,procurer's revenue comparisons and optimal auction designare characterized in these two models.Finally,this article discusses some improvement of robustnessof our models,with respect to the assumptions.展开更多
One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly...One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly. However, most of previous work only takes account of either maximizing single user's utility or the whole network's payoff, rarely considers the negotiation between them. In this paper, we propose a novel network selection approach using improved multiplicative multi-attribute auction (MMA). At first, an improved MMA method is put forward to define the user's utility. Additionally, user cost is defined by considering allocated bandwidth, network load intensity and cost factor parameter. And last the best suitable network is selected according to the user's performance-cost-ration. Simulation results confirm that the proposed scheme outperforms the existing scheme in terms of network selection's fairness, user's performance-cost-ration, load balancing and the number of accommodated users.展开更多
The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of deci...The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.展开更多
Traditional researches on user preferences mining mainly explore the user’s overall preferences on the project,but ignore that the fundamental motivation of user preferences comes from their attitudes on some attribu...Traditional researches on user preferences mining mainly explore the user’s overall preferences on the project,but ignore that the fundamental motivation of user preferences comes from their attitudes on some attributes of the project.In addition,traditional researches seldom consider the typical preferences combination of group users,which may have influence on the personalized service for group users.To solve this problem,a method with noise reduction for group user preferences mining is proposed,which focuses on mining the multi-attribute preference tendency of group users.Firstly,both the availability of data and the noise interference on preferences mining are considered in the algorithm design.In the process of generating group user preferences,a new path is used to generate preference keywords so as to reduce the noise interference.Secondly,the Gibbs sampling algorithm is used to estimate the parameters of the model.Finally,using the user comment data of several online shopping websites as experimental objects,the method is used to mine the multi-attribute preferences of different groups.The proposed method is compared with other methods from three aspects of predictive ability,preference mining ability and preference topic similarity.Experimental results show that the method is significantly better thap other existing methods.展开更多
Social trust network(STN)and minimum cost consensus(MCC)models have been widely used to address consensus issues in multi-attribute group decision-making(MAGDM)problems with limited resources.However,most researchers ...Social trust network(STN)and minimum cost consensus(MCC)models have been widely used to address consensus issues in multi-attribute group decision-making(MAGDM)problems with limited resources.However,most researchers have overlooked the decision maker‘(DMs)’confidence levels(CLs)and adjustment willingness implicit in their evaluations.To address these problems,this paper explores a confidence-based MCC model that considers DMs’adjustment willingness in the STN.The proposed model includes several modifications to the traditional trust propagation and consensus optimization models.Firstly,the improved method for measuring CLs of DMs and the confidence-based normalization approach are defined,respectively.Secondly,the bounded trust propagation operator is proposed,which considers the credibility of mediators to complete the STN.Thirdly,the identification rules based on the consensus index and CL are defined,and the MCC model with personalized cost functions and acceptable adjustment thresholds is built to automatically generate adjustment values for non-consensus DMs.Finally,a model to identify the non-cooperative behavior at the element level is established and the hybrid MCC model with persuasion strategies is provided.Finally,a case study is processed to verify the applicability of the proposed model,and comparison and sensitivity analysis are conducted to highlight its benefits.展开更多
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China(11401084)Harbin Science Technology Innovation Talent Research Fund(2016RQQXJ230)
文摘The simplified neutrosophic set(SNS) is a useful generalization of the fuzzy set that is designed for some practical situations in which each element has different truth membership function, indeterminacy membership function and falsity membership function. In this paper, we develop a series of power aggregation operators called simplified neutrosophic number power weighted averaging(SNNPWA) operator, simplified neutrosophic number power weighted geometric(SNNPWG) operator, simplified neutrosophic number power ordered weighted averaging(SNNPOWA) operator and simplified neutrosophic number power ordered weighted geometric(SNNPOWG) operator. We present some useful properties of the operators and discuss the relationships among them. Moreover, an approach to multiattribute group decision making(MAGDM) within the framework of SNSs is developed by the above aggregation operators.Finally, a practical application of the developed approach to deal with the problem of investment is given, and the result shows that our approach is reasonable and effective in dealing with uncertain decision making problems.
基金supported by the National Natural Science Foundation of China(61402260,61473176)Taishan Scholar Project of Shandong Province(TSQN201812092)
文摘Pythagorean fuzzy set(PFS) can provide more flexibility than intuitionistic fuzzy set(IFS) for handling uncertain information, and PFS has been increasingly used in multi-attribute decision making problems. This paper proposes a new multiattribute group decision making method based on Pythagorean uncertain linguistic variable Hamy mean(PULVHM) operator and VIKOR method. Firstly, we define operation rules and a new aggregation operator of Pythagorean uncertain linguistic variable(PULV) and explore some properties of the operator.Secondly, taking the decision makers' hesitation degree into account, a new score function is defined, and we further develop a new group decision making approach integrated with VIKOR method. Finally, an investment example is demonstrated to elaborate the validity of the proposed method. Sensibility analysis and comprehensive comparisons with another two methods are performed to show the stability and advantage of our method.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
基金supported by the National Natural Science Foundation of China(61273275)
文摘Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.
基金supported by the National Natural Science Foundation of China(7127105171371002+1 种基金71471032)the Fundamental Research Funds for the Central Universities,NEU,China(N140607001)
文摘A method for solving the winner determination problem (WDP) in multi-attribute procurement auctions is proposed, based on technical and business experts' evaluation information. Firstly, on the background of procurements in China, a multi-attribute pro- curement auction mechanism is presented, where technical and business experts participate in the bid evaluation. Then, the concept of TOPSIS is used to determine the positive and negative ideal points of the WDP according to bid prices, the technical and business experts' evaluation information. Further, the closeness coefficient of each bidder (candidate supplier) is obtained by calculating the distances to the positive and negative ideal points. Thus, the winning supplier can be determined according to the closeness coefficients. Finally, a numerical example is used to illustrate the use of the proposed method.
基金the National Natural Science Foundation of China (No.70329001 and No. 70321001)
文摘Demand uncertainty is a key factor for the seller's decision making, especially in the e-business environment, for the website to sell products through the online auction. In this paper, two kinds of demand uncertainties are considered: the consumer regime uncertainty and the inherent randomness of the market environment. Then, how to use a novel business model and group-buying auction (GBA) is analyzed in such a market environment. Based on the comparison of the GBA and the posted price mechanism, some conditions that favor the GBA are provided.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200159National Natural Science Foundation of China under Grant No. 70571014
文摘To eliminate computational problems involved in evaluating multi-attribute bids with differentmeasures,this article first normalizes each individual component of a bid,and then makes use ofthe weighted product method to present a new scoring function that converts each bid into a score.Twokinds of multi-attribute auction models are introduced in terms of scoring rules and bidding objectivefunctions.Equilibrium bidding strategies,procurer's revenue comparisons and optimal auction designare characterized in these two models.Finally,this article discusses some improvement of robustnessof our models,with respect to the assumptions.
基金supported by the National Natural Science Funds of China for Young Scholar (61001115)the Fundamental Research Funds for the Central Universities of China (2012RC0126,2011RC0110)
文摘One of the remarkable features of the next generation network is the integration of heterogeneous wireless networks, which enables mobile users with multi-mode terminals access to the best available network seamlessly. However, most of previous work only takes account of either maximizing single user's utility or the whole network's payoff, rarely considers the negotiation between them. In this paper, we propose a novel network selection approach using improved multiplicative multi-attribute auction (MMA). At first, an improved MMA method is put forward to define the user's utility. Additionally, user cost is defined by considering allocated bandwidth, network load intensity and cost factor parameter. And last the best suitable network is selected according to the user's performance-cost-ration. Simulation results confirm that the proposed scheme outperforms the existing scheme in terms of network selection's fairness, user's performance-cost-ration, load balancing and the number of accommodated users.
基金Supported by 2023 Henan Provincial Department of Science and Technology Key R&D and Promotion Special Project(Soft Science Research)(232400411049)Henan Province Science and Technology Research and Development Plan Joint Fund(Industry)Project(225101610054)。
文摘The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.
基金the Major Project of National Social Science Foundation of China under Grant No.20&ZD127.
文摘Traditional researches on user preferences mining mainly explore the user’s overall preferences on the project,but ignore that the fundamental motivation of user preferences comes from their attitudes on some attributes of the project.In addition,traditional researches seldom consider the typical preferences combination of group users,which may have influence on the personalized service for group users.To solve this problem,a method with noise reduction for group user preferences mining is proposed,which focuses on mining the multi-attribute preference tendency of group users.Firstly,both the availability of data and the noise interference on preferences mining are considered in the algorithm design.In the process of generating group user preferences,a new path is used to generate preference keywords so as to reduce the noise interference.Secondly,the Gibbs sampling algorithm is used to estimate the parameters of the model.Finally,using the user comment data of several online shopping websites as experimental objects,the method is used to mine the multi-attribute preferences of different groups.The proposed method is compared with other methods from three aspects of predictive ability,preference mining ability and preference topic similarity.Experimental results show that the method is significantly better thap other existing methods.
基金This work has been supported in part by the National Natural Science Foundation of China(NSFC),under grants Nos.72101168,72071135.
文摘Social trust network(STN)and minimum cost consensus(MCC)models have been widely used to address consensus issues in multi-attribute group decision-making(MAGDM)problems with limited resources.However,most researchers have overlooked the decision maker‘(DMs)’confidence levels(CLs)and adjustment willingness implicit in their evaluations.To address these problems,this paper explores a confidence-based MCC model that considers DMs’adjustment willingness in the STN.The proposed model includes several modifications to the traditional trust propagation and consensus optimization models.Firstly,the improved method for measuring CLs of DMs and the confidence-based normalization approach are defined,respectively.Secondly,the bounded trust propagation operator is proposed,which considers the credibility of mediators to complete the STN.Thirdly,the identification rules based on the consensus index and CL are defined,and the MCC model with personalized cost functions and acceptable adjustment thresholds is built to automatically generate adjustment values for non-consensus DMs.Finally,a model to identify the non-cooperative behavior at the element level is established and the hybrid MCC model with persuasion strategies is provided.Finally,a case study is processed to verify the applicability of the proposed model,and comparison and sensitivity analysis are conducted to highlight its benefits.