In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate ...In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.展开更多
Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ...Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ensure the quality of service(QoS)requirements of weak users at the same time,so that the sum rates of system can be improved.Combining with the technical advantage of pilot grouping,a low complexity pilot allocation scheme based on matching algorithm is proposed,which divides the users in the target cell into weak user group and strong user group,and adopts the minimum-maximum matching method to allocate pilots in weak user group.Through the introduction of Hungarian algorithm,a pilot allocation method is designed to ensure the fairness of the strong users.The simulation results show that,compared with the smart pilot allocation scheme,the pilot allocation scheme based on Hungarian algorithm,the pilot allocation scheme based on user grouping and the random pilot allocation scheme,the system performance of the proposed scheme has been effectively improved.展开更多
Current minimization programs do not permit full control over different aspects of minimization algorithm such as distance or probability measures and may not allow for unequal allocation ratios. This article describe...Current minimization programs do not permit full control over different aspects of minimization algorithm such as distance or probability measures and may not allow for unequal allocation ratios. This article describes the implementation of “MinimPy” an open-source minimization program in Python programming language, which provides full customizetion of minimization features. MinimPy supports naive and biased coin minimization together with various new and classic distance measures. Data syncing is provided to facilitate minimization of multicenter trial over the network. MinimPy can easily be modified to fit special needs of clinical trials and in particular change it to a pure web application, though it currently supports network syncing of data in multi-center trials using network repositories.展开更多
An iterative transmit power allocation (PA) algorithm was proposed for group-wise space-time block coding (G-STBC) systems with group-wise successive interference cancellation (GSIC) receivers. Group-wise interference...An iterative transmit power allocation (PA) algorithm was proposed for group-wise space-time block coding (G-STBC) systems with group-wise successive interference cancellation (GSIC) receivers. Group-wise interference suppression (GIS) filters are employed to separate each group's transmit signals from other interferences and noise. While the total power on all transmit symbols is constrained, all transmit PA coefficients are updated jointly according to the channel information at each iteration. Through PA, each detection symbol has the same post-detection signal to interference-and-noise ratio (SINR). The simulation results verify that the proposed PA algorithm converges at the equilibrium quickly after few iterations, and it achieves much lower bit error rates than the previous single symbol SIC PA and the fixed ratio PA algorithms for G-STBC systems with GSIC receivers .展开更多
Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve ...Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve spectral efficiency.We study the integration of the MEC with the NOMA to improve the computation service for the Beyond Fifth-Generation(B5G)and the Sixth-Generation(6G)wireless networks.This paper aims to minimize the energy consumption of a hybrid NOMA-assisted MEC system.In a hybrid NOMA system,a user can offload its task during a time slot shared with another user by the NOMA,and then upload the remaining data during an exclusive time duration served by Orthogonal Multiple Access(OMA).The original energy minimization problem is non-convex.To efficiently solve it,we first assume that the user grouping is given,and focuses on the one group case.Then,a multilevel programming method is proposed to solve the non-convex problem by decomposing it into three subproblems,i.e.,power allocation,time slot scheduling,and offloading task assignment,which are solved optimally by carefully studying their convexity and monotonicity.The derived solution is optimal to the original problem by substituting the closed expressions obtained from those decomposed subproblems.Furthermore,we investigate the multi-user case,in which a close-to-optimal algorithm with lowcomplexity is proposed to form users into different groups with unique time slots.The simulation results verify the superior performance of the proposed scheme compared with some benchmarks,such as OMA and pure NOMA.展开更多
The Multiple-Input Multiple-Output(MIMO)Non-Orthogonal Multiple Access(NOMA)based on Spatial Modulation(SM-MIMO-NOMA)system has been proposed to achieve better spectral efficiency with reduced radio frequency chains c...The Multiple-Input Multiple-Output(MIMO)Non-Orthogonal Multiple Access(NOMA)based on Spatial Modulation(SM-MIMO-NOMA)system has been proposed to achieve better spectral efficiency with reduced radio frequency chains comparing to the traditional MIMO-NOMA system.To improve the performance of SM-MIMO-NOMA systems,we extend them to generalized spatial modulation scenarios while maintaining moderate complexity and fairness.In this paper,system spectral efficiency and transmission quality improvements are proposed by investigating a sum-rate maximization resource allocation problem that is subject to the total transmitted power,user grouping,and resource block constraints.To solve this non-convex and difficult problem,a graph-based user grouping strategy is proposed initially to maximize the mutual gains of intragroup users.An auxiliary-variable approach is then adopted to transform the power allocation subproblem into a convex one.Simulation results demonstrate that the proposed algorithm has better performance in terms of bit error rate and sum rates.展开更多
Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a met...Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.展开更多
In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algori...In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algorithm(GA) is proposed to optimize the sub-carriers and bits allocation. In the algorithm, a random velocity between the maximum and minimum particle velocity is used as the updating velocity instead of maximum or minimum velocity when the updated particle velocity is higher than the maximum particle velocity or lower than the minimum particle velocity. Then, the convergence population is used as the initial population of the genetic algorithm to optimize the subcarriers and bits allocation further. Simulation results show that the transmitted power of the proposed algorithm is about 2 d B to 10 d B lower than that of the genetic algorithm, particle swarm optimization algorithm, and Zhang's algorithm.展开更多
Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional vari...Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional variables distribution that should come to be. On the basis of linear nonhydrostatic anelastic equations, the paper hereby compares, mainly graphically, the computational dispersion with analytical solutions for four kinds of 3-dimensional meshes commonly found in mesoscale models, in terms of frequency, horizontal and vertical group velocities. The result indicates that the 3-D mesh C/CP has the best computational dispersion, followed by Z/LZ and Z/LY, with the C/L having the worst performance. It is then known that the C/CP mesh is the most desirable allocation in the design of nonhydrostatic baroclinic models. The mesh has, however, larger errors when dealing with shorter horizontal wavelengths. For the simulation of smaller horizontal scales, the horizontal grid intervals have to be shortened to reduce the errors. Additionally, in view of the dominant use of C/CP mesh in finite-difference models, it should be used in conjunction with the Z/LZ or Z/LY mesh if variables are allocated in spectral models.展开更多
In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming...In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming at the problem that the maximization of system sum rate cannot be solved directly,a step-by-step resource allocation optimization scheme based on machine learning is proposed.First,in order to achieve a trade-off between the system sum rate and user fairness,the system throughput formula is derived.Then,according to the combinatorial characteristics of the system throughput maximization problem,the original optimization problem is divided into two sub-problems,that are power allocation and user grouping.Finally,genetic algorithm is introduced to solve the sub-problem of power allocation,and hungarian algorithm is introduced to solve the sub-problem of user grouping.By comparing the ergodic data rate of NOMA users with statistical CSI and perfect CSI,the effectiveness of the statistical CSI sorting is verified.Compared with the orthogonal multiple access(OMA)scheme,the NOMA scheme with the fixed user grouping scheme and the random user grouping scheme,the system throughput performance of the proposed scheme is signifi-cantly improved.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant no.61473066 and Grant no.61601109in part by the Fundamental Research Funds for the Central Universities under Grant No.N152305001.
文摘In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.
基金the National Natural Science Foundation of China(No.62001001).
文摘Pilot allocation is one of the effective means to reduce pilot pollution in massive multiple-input multiple-output(MIMO)systems.The goal of this paper is to improve the uplink achievable sum rates of strong users,and ensure the quality of service(QoS)requirements of weak users at the same time,so that the sum rates of system can be improved.Combining with the technical advantage of pilot grouping,a low complexity pilot allocation scheme based on matching algorithm is proposed,which divides the users in the target cell into weak user group and strong user group,and adopts the minimum-maximum matching method to allocate pilots in weak user group.Through the introduction of Hungarian algorithm,a pilot allocation method is designed to ensure the fairness of the strong users.The simulation results show that,compared with the smart pilot allocation scheme,the pilot allocation scheme based on Hungarian algorithm,the pilot allocation scheme based on user grouping and the random pilot allocation scheme,the system performance of the proposed scheme has been effectively improved.
文摘Current minimization programs do not permit full control over different aspects of minimization algorithm such as distance or probability measures and may not allow for unequal allocation ratios. This article describes the implementation of “MinimPy” an open-source minimization program in Python programming language, which provides full customizetion of minimization features. MinimPy supports naive and biased coin minimization together with various new and classic distance measures. Data syncing is provided to facilitate minimization of multicenter trial over the network. MinimPy can easily be modified to fit special needs of clinical trials and in particular change it to a pure web application, though it currently supports network syncing of data in multi-center trials using network repositories.
基金The National High Technology ResearchDevelopment Program of China (863 Pro-gram) (No003aa12331007)National Nat-ural Science Foudation of China ( No60572157,60332030)
文摘An iterative transmit power allocation (PA) algorithm was proposed for group-wise space-time block coding (G-STBC) systems with group-wise successive interference cancellation (GSIC) receivers. Group-wise interference suppression (GIS) filters are employed to separate each group's transmit signals from other interferences and noise. While the total power on all transmit symbols is constrained, all transmit PA coefficients are updated jointly according to the channel information at each iteration. Through PA, each detection symbol has the same post-detection signal to interference-and-noise ratio (SINR). The simulation results verify that the proposed PA algorithm converges at the equilibrium quickly after few iterations, and it achieves much lower bit error rates than the previous single symbol SIC PA and the fixed ratio PA algorithms for G-STBC systems with GSIC receivers .
文摘Multi-access Edge Computing(MEC)is an essential technology for expanding computing power of mobile devices,which can combine the Non-Orthogonal Multiple Access(NOMA)in the power domain to multiplex signals to improve spectral efficiency.We study the integration of the MEC with the NOMA to improve the computation service for the Beyond Fifth-Generation(B5G)and the Sixth-Generation(6G)wireless networks.This paper aims to minimize the energy consumption of a hybrid NOMA-assisted MEC system.In a hybrid NOMA system,a user can offload its task during a time slot shared with another user by the NOMA,and then upload the remaining data during an exclusive time duration served by Orthogonal Multiple Access(OMA).The original energy minimization problem is non-convex.To efficiently solve it,we first assume that the user grouping is given,and focuses on the one group case.Then,a multilevel programming method is proposed to solve the non-convex problem by decomposing it into three subproblems,i.e.,power allocation,time slot scheduling,and offloading task assignment,which are solved optimally by carefully studying their convexity and monotonicity.The derived solution is optimal to the original problem by substituting the closed expressions obtained from those decomposed subproblems.Furthermore,we investigate the multi-user case,in which a close-to-optimal algorithm with lowcomplexity is proposed to form users into different groups with unique time slots.The simulation results verify the superior performance of the proposed scheme compared with some benchmarks,such as OMA and pure NOMA.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1511300)the National Natural Science Foundation of China(Grant No.U21A20447 and 61971079)+2 种基金the Basic Research and Frontier Exploration Project of Chongqing (Grant No.cstc2019jcyj-msxmX0666)the Innovative Group Project of the National Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-cxttX0002)the Regional Creative Cooperation Program of Sichuan (2020YFQ0025).
文摘The Multiple-Input Multiple-Output(MIMO)Non-Orthogonal Multiple Access(NOMA)based on Spatial Modulation(SM-MIMO-NOMA)system has been proposed to achieve better spectral efficiency with reduced radio frequency chains comparing to the traditional MIMO-NOMA system.To improve the performance of SM-MIMO-NOMA systems,we extend them to generalized spatial modulation scenarios while maintaining moderate complexity and fairness.In this paper,system spectral efficiency and transmission quality improvements are proposed by investigating a sum-rate maximization resource allocation problem that is subject to the total transmitted power,user grouping,and resource block constraints.To solve this non-convex and difficult problem,a graph-based user grouping strategy is proposed initially to maximize the mutual gains of intragroup users.An auxiliary-variable approach is then adopted to transform the power allocation subproblem into a convex one.Simulation results demonstrate that the proposed algorithm has better performance in terms of bit error rate and sum rates.
基金supported by the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19CF002).
文摘Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.
基金supported by the National Natural Science Foundation of China under Grant No.61371112
文摘In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algorithm(GA) is proposed to optimize the sub-carriers and bits allocation. In the algorithm, a random velocity between the maximum and minimum particle velocity is used as the updating velocity instead of maximum or minimum velocity when the updated particle velocity is higher than the maximum particle velocity or lower than the minimum particle velocity. Then, the convergence population is used as the initial population of the genetic algorithm to optimize the subcarriers and bits allocation further. Simulation results show that the transmitted power of the proposed algorithm is about 2 d B to 10 d B lower than that of the genetic algorithm, particle swarm optimization algorithm, and Zhang's algorithm.
基金Supported by the open research program of LASG Institute of Atmospheric Physics Chinese Academy of Sciences
文摘Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional variables distribution that should come to be. On the basis of linear nonhydrostatic anelastic equations, the paper hereby compares, mainly graphically, the computational dispersion with analytical solutions for four kinds of 3-dimensional meshes commonly found in mesoscale models, in terms of frequency, horizontal and vertical group velocities. The result indicates that the 3-D mesh C/CP has the best computational dispersion, followed by Z/LZ and Z/LY, with the C/L having the worst performance. It is then known that the C/CP mesh is the most desirable allocation in the design of nonhydrostatic baroclinic models. The mesh has, however, larger errors when dealing with shorter horizontal wavelengths. For the simulation of smaller horizontal scales, the horizontal grid intervals have to be shortened to reduce the errors. Additionally, in view of the dominant use of C/CP mesh in finite-difference models, it should be used in conjunction with the Z/LZ or Z/LY mesh if variables are allocated in spectral models.
基金Supported by the National Natural Science Foundation of China(No.62001001).
文摘In a real communication scenario,it is very difficult to obtain the real-time channel state infor-mation(CSI)accurately,so the non-orthogonal multiple access(NOMA)system with statistical CSI has been researched.Aiming at the problem that the maximization of system sum rate cannot be solved directly,a step-by-step resource allocation optimization scheme based on machine learning is proposed.First,in order to achieve a trade-off between the system sum rate and user fairness,the system throughput formula is derived.Then,according to the combinatorial characteristics of the system throughput maximization problem,the original optimization problem is divided into two sub-problems,that are power allocation and user grouping.Finally,genetic algorithm is introduced to solve the sub-problem of power allocation,and hungarian algorithm is introduced to solve the sub-problem of user grouping.By comparing the ergodic data rate of NOMA users with statistical CSI and perfect CSI,the effectiveness of the statistical CSI sorting is verified.Compared with the orthogonal multiple access(OMA)scheme,the NOMA scheme with the fixed user grouping scheme and the random user grouping scheme,the system throughput performance of the proposed scheme is signifi-cantly improved.