期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Propagation Characteristics of Ultrasonic Guided Waves in Grouted Rockbolt Systems with Bond Defects under Different Confining Conditions
1
作者 Shuisheng Yu Jin Chen +2 位作者 Yawei Wang Honghao Yang Shucan Lu 《Journal of Modern Physics》 CAS 2023年第5期722-740,共19页
A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Theref... A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure. 展开更多
关键词 Grouted rockbolt Systems Bond Defect Pull-Out Load Confining Pressure Ultrasonic Guided Wave
下载PDF
Experimental and numerical evaluation on debonding of fully grouted rockbolt under pull‑out loading
2
作者 Shuisheng Yu Wancheng Zhu Leilei Niu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第1期84-98,共15页
The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,bas... The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,based on laboratory experiments,ultrasonic guided wave propagation in fully grouted rockbolt under different pull-out loads was investigated in order to examine the resultant debonding of rockbolt.The signals obtained from the ultrasonic monitoring during the pull-out test were processed using wavelet multi-scale analysis and frequency spectrum analysis,the signal amplitude and the amplitude ratio(Q)of low frequency to high frequency were defined to quantify the debonding of rockbolt.In addition to the laboratory test,numerical simulation on the effect of the embedment lengths on ultrasonic guided wave propagation in rockbolt was conducted by using a damage-based model,and the debonding between rockbolt and cement mortar was numerically examined.It was confirmed that the ultrasonic guided wave propagation in rockbolt was very sensitive to the debonding because of pull-out load,therefore,the critical bond length could be calculated based on the propagation of guided wave in the grouted rockbolt.In time domain,the signal amplitude in rockbolt increased with pull-out load from 0 to 100 kN until the completely debonding,thus quantifying the debonding under the different pull-out loads.In the frequency domain,as the Q value increased,the debonding length of rockbolt decreased exponentially.The numerical results confirmed that the guided wave propagation in the fully grouted rockbolt was effective in detecting and quantifying the debonding of rockbolt under pull-out load. 展开更多
关键词 Fully grouted rockbolt DEBONDING Pull-out load Ultrasonic guided wave propagation
下载PDF
Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads
3
作者 Yan Wang Changdong Li +3 位作者 Zhilan Cai Guoqiang Zhu Jiaqing Zhou Wenmin Yao 《Journal of Earth Science》 SCIE CAS CSCD 2023年第2期354-368,共15页
Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering.Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects... Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering.Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects.Furthermore,the spatial structure of the rock mass has a direct influence on the effect of the anchorage support.To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces,pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted.The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples.A weaker surrounding rock results in a lower peak load and a longer critical anchorage length,and vice versa.The results also show that 70%mudstone content can be considered a critical condition for impacting the peak load.Specifically,the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%.Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0°and 60°,the rock mass with a fracture dip angle of 30°has a more uniformly distributed force at the anchorage interface.When the fracture dip angle exceeds 60°,the dip angle is no longer a key indicator of peak load.The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method. 展开更多
关键词 layered rocks grouted rockbolts grout/rock interface distributed optical fiber mechanical behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部