The culm length, panicle length, spikelets per panicle and panicle exsertion were evaluated by using F2:3 population including 200 lines derived from the cross of indica and japonica Milyang 23/Jileng 1 under five di...The culm length, panicle length, spikelets per panicle and panicle exsertion were evaluated by using F2:3 population including 200 lines derived from the cross of indica and japonica Milyang 23/Jileng 1 under five different environments of Beijing (natural normal growing environment), Kunming (natural cold environment), Gongzhuling of China (cold water irrigation) and Chuncheon of Korea (natural normal growing environment and cold water irrigation), and QTLs of these traits were analyzed by using SSR markers. The results showed that 44 QTLs related to these agronomic traits were detected under five different growing environments, and these QTLs have been located on 11 chromosomes except chromosome 9. The QTLs for qCLla, qCL1b, qCL5a, qCL6b, qPLla, qPL3a, qPL6b, qPL6c, qPL7b, qSP8b, qSPlc, qSP11a, qSP12, and qPE1 have been detected under more than two growing environments, and those that were little affected by environments, were stable QTLs. Among them, qCLla, qCLlb, qPLla, qSPlc, and qPE1 explained 24.2-55.2%, 22.7-39.9%, 12.5-27.7%, 14.4-33.5%, and 26.6-28.7% of observed phynotypic variation, respectively, which were major genes mainly appearing as overdominance. These QTLs cause the increase in action to culm length, panicle length, spikelets per panicle, and panicle exsertion under cold environment, showing that these QTLs were correlated with cold tolerance.展开更多
Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR marker...Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.展开更多
基金supported by the National Natural Science Foundation of China(30070421)the 10th Five Year National Key Research Program(2004BA525B02)Cooperative Research Between China and Korea(2002-2004).
文摘The culm length, panicle length, spikelets per panicle and panicle exsertion were evaluated by using F2:3 population including 200 lines derived from the cross of indica and japonica Milyang 23/Jileng 1 under five different environments of Beijing (natural normal growing environment), Kunming (natural cold environment), Gongzhuling of China (cold water irrigation) and Chuncheon of Korea (natural normal growing environment and cold water irrigation), and QTLs of these traits were analyzed by using SSR markers. The results showed that 44 QTLs related to these agronomic traits were detected under five different growing environments, and these QTLs have been located on 11 chromosomes except chromosome 9. The QTLs for qCLla, qCL1b, qCL5a, qCL6b, qPLla, qPL3a, qPL6b, qPL6c, qPL7b, qSP8b, qSPlc, qSP11a, qSP12, and qPE1 have been detected under more than two growing environments, and those that were little affected by environments, were stable QTLs. Among them, qCLla, qCLlb, qPLla, qSPlc, and qPE1 explained 24.2-55.2%, 22.7-39.9%, 12.5-27.7%, 14.4-33.5%, and 26.6-28.7% of observed phynotypic variation, respectively, which were major genes mainly appearing as overdominance. These QTLs cause the increase in action to culm length, panicle length, spikelets per panicle, and panicle exsertion under cold environment, showing that these QTLs were correlated with cold tolerance.
基金supported by the Program of National High Technology Research and Development,Ministry of Science and Technology,China (Grant No.2010AA101301)the Program of Introducing International Advanced Agricultural Science and Technology in China (Grant No. 2006-G8[4]-31-1)the Program of Science Technology Basis and Conditional Platform in China (Grant No. 505005)
文摘Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.