Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short...Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short-growthduration and higher yields driven by higher dry matter production. To make clear the variations in dry matterproduction across seasons, four early-season rice varieties were chosen for late-season transplantation. The grainyield, dry matter accumulation, leaf photosynthetic, and leaf stomatal properties were studied. It was observedthat the average yields of these four varieties in the late season were 33% greater, despite a reduced growth periodof 13 days in comparison with the early season. Furthermore, there was a notable increase in both total and postheadingdry matter production during the late season. The leaf net photosynthetic rate, stomatal area, stomatalwidth, and stomatal length were higher in the late season. Despite no significant difference in stomatal densitybetween seasons, strong positive linear relationships were observed between net photosynthetic rate and stomatalconductance, and between stomatal conductance and area. These relationships demonstrate that the increase ofthe stomatal width and length of the leaves in the late season leads to an increase in the stomatal area, therebyincreasing the stomatal conductance and enhancing the photosynthesis of the leaves. Consequently, this leads togreater dry matter production and a higher yield compared to the early season. Therefore, when breeding newhigh-yielding and short-growing varieties, the large stomatal area can be used as a reference index.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
[Objective] The aims were to understand variation characteristics of water resources and provide theoretical guidance for the formulation of agricultural irrigation methods.[Method] Taking the precipitation records du...[Objective] The aims were to understand variation characteristics of water resources and provide theoretical guidance for the formulation of agricultural irrigation methods.[Method] Taking the precipitation records during crop growing season(from April to September)observed by 177 weather stations from 1971 to 2008 in the three provinces of Northeast China(Heilongjiang,Jilin and Liaoning)as research data,annual change and spatial distribution characteristics of precipitation during crop growing season were analyzed by means of small grid interpolation and climatic trend rate.[Result] The precipitation during crop growing season general exhibited the decreasing trend and the precipitation trend rate was-8.6 mm/10a in Northeast China.In addition,there was lack of rain from 1971 to 1980 and relatively abundant of rain during 1981 and 1990 respectively.Moreover,the precipitation obviously exhibited decreasing trend from 1991 to 2008.But the decreasing trend was inconsistent in spatial distributions,that was,the precipitation slightly increased in relatively rainless areas and obviously decreased in relatively rainy areas.[Conclusion] The areas with obvious decreasing trend of precipitation during crop growing season are the main grain producing zones in Northeast China,so the problem of food production security caused by the precipitation changes should be paid enough attention.展开更多
Based on the conventional meteorological data of temperature,accumulated temperature,precipitation,sunshine,frozen soil and frost-free period from five stations(including Liaozhong,Kaiyuan,Dawa,Donggang and Zhuanghe)i...Based on the conventional meteorological data of temperature,accumulated temperature,precipitation,sunshine,frozen soil and frost-free period from five stations(including Liaozhong,Kaiyuan,Dawa,Donggang and Zhuanghe)in Liaoning Province from April to September during 1960-2009,the climatic changes in growing season in rice producing area of Liaoning Province were analyzed.The results showed that average temperature,frost-free period and accumulated temperature showed increase trend in growing season in rice producing area over the past 50 years,while average maximum depth of frozen soil,precipitation and sunshine duration went down with fluctuation.展开更多
[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1...[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.展开更多
Researching into changes in thermal growing season has been one of the most important scientific issues in studies of the impact of global climate change on terrestrial ecosystems. However, few studies investigated th...Researching into changes in thermal growing season has been one of the most important scientific issues in studies of the impact of global climate change on terrestrial ecosystems. However, few studies investigated the differences under various definitions of thermal growing season and compared the trends of thermal growing season in different parts of China. Based on the daily mean air temperatures collected from 877 meteorological stations over northern China from 1961 to 2015, we investigated the variations of the thermal growing season parameters including the onset, ending and duration of the growing season using the methods of differential analysis, trend analysis, comparative analysis, and Kriging interpolation technique. Results indicate that the differences of the maximum values of those indices for the thermal growing season were significant, while they were insignificant for the mean values. For indices with the same length of the spells exceeding 5°C, frost criterion had a significant effect on the differences of the maximum values. The differences of the mean values between frost and non-frost indices were also slight, even smaller than those from the different lengths of the spells. Temporally, the starting date of the thermal growing season advanced by 10.0–11.0 days, while the ending dates delayed by 5.0–6.0 days during the period 1961–2015. Consequently, the duration of the thermal growing season was prolonged 15.0–16.0 days. Spatially, the advanced onset of the thermal growing season occurred in the southwestern, eastern, and northeastern parts of northern China, whereas the delayed ending of the thermal growing season appeared in the western part, and the length of the thermal growing season was prolonged significantly in the vast majority of northern China. The trend values of the thermal growing season were affected by altitude. The magnitude of the earlier onset of the thermal growing season decreased, and that of the later ending increased rapidly as the altitude increased, causing the magnitude of the prolonged growing season increased correspondingly. Comparing the applicability of selected indices and considering the impacts of frost on the definitions are important and necessary for determining the timing and length of the thermal growing season in northern China.展开更多
Amylose content and starch granule size in grains influence rice quality,which differs between the early(ES)and late season(LS).The objective of this study was to determine the variation of amylose content and starch ...Amylose content and starch granule size in grains influence rice quality,which differs between the early(ES)and late season(LS).The objective of this study was to determine the variation of amylose content and starch granule size between seasons and find the main reasons(e.g.,temperature and solar radiation)for the observed variation.Field experiments with six rice varieties(three high and three low amylose content rice)planted in the ES and LS were conducted in 2016 and 2017,respectively.The mean temperatures during the filling stage were higher in ES,however,the daily temperatures at 7-10 days after flowering(DAF)in 2016,and at 5-10,13-14 DAF in 2017 were higher in LS.The results showed that amylose content in LS was lower than in ES with high amylose content rice varieties(HACV);the opposite trend occurred with low amylose content rice varieties(LACV).The mean starch granule diameter was higher in LS than ES in 2016,but the opposite result occurred in 2017 with all rice.Our results suggest that higher temperatures increased and decreased the amylose content in HACV and LACV,respectively.Temperatures at 5-15 DAF were important for the formation of starch granules:lower temperatures during 10-14 DAF increased the proportion of larger starch granules(d>6.21μm,some with d>13.3μm),and higher temperatures at 5-6 DAF increased the proportion of starch granules with diameter 4.24-6.21μm.展开更多
To determine the potential effects of climate change on crop phenological development and productivity, an integrated analysis was conducted based on the observed climatic and phenological records of Northeast China f...To determine the potential effects of climate change on crop phenological development and productivity, an integrated analysis was conducted based on the observed climatic and phenological records of Northeast China from 1992 to 2012. A set of quality assurance procedures, including repeated record checks, agro-meteorological station selection, internal consistency checks, temporal outlier checks, spatial outlier checks, and interpolation of missing data, were designed and applied to the phenology datasets of spring maize and paddy rice. Our results indicated that almost all phenological dates of spring maize and paddy rice became increasingly delayed from 1992 to 2012, The duration of the growing season was prolonged, particularly for the grain-filling stage (GS3). The prolonged growing season was beneficial to productivity. For spring maize, the average precipitation during GS3 decreased at a rate of 27.46 mm/decade, and the annual accumulated temperature over 10℃ increased at a rate of 31.07℃/ decade. Farmers initiatively adjusted crop cultivars and selected drought-resistant crops to cope with the challenges of drought.展开更多
It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season (SOS) across the globe during the 20th century. Projections of further cha...It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season (SOS) across the globe during the 20th century. Projections of further changes in the SOS for the 21st century under certain emissions scenarios (Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS (defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982-2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21st century. By around 2040-59, the SOS will have advanced by -4.7 days under RCP2.6, -8.4 days under RCP4.5, and -10.1 days under RCPS.5, relative to 1985-2004. By 2080-99, it will have advanced by -4.3 days under RCP2.6, -11.3 days under RCP4.5, and -21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity, the larger the date-shift-rate of the SOS.展开更多
The contribution of urbanization to the changes in growing season indices(e.g.,the start date of the growing season,Ds)in Shanghai,eastern China,for the period 1873–2013 is assessed.The urban-related Ds advancement(r...The contribution of urbanization to the changes in growing season indices(e.g.,the start date of the growing season,Ds)in Shanghai,eastern China,for the period 1873–2013 is assessed.The urban-related Ds advancement(referred to as the urbanization contribution,UC)is reconstructed based on the changing urban-land fraction within a grid box around Shanghai for 1873–2013.After removing the UC from the raw Ds time series,the secular trend(ST)representing the long-term climatic warming and multidecadal variability(MDV)representing an oscillatory component with a period of several decades are obtained by using the Ensemble Empirical Mode Decomposition(EEMD)method.Results show that the UC is comparable with the contribution of the ST for the period 1873–2013,when Ds exhibits an advancing rate of about 0.44 days per decade.MDV plays an important role in regulating changes in Ds on the decadal timescale,e.g.,with a contribution of about 56.1%for1981–2013.展开更多
In order to ascertain the soil carbon flux characteristics of poplar plantations and crop communities in the Dongting Lake area during the growing season and their correlation with hydrothermal conditions,soil respira...In order to ascertain the soil carbon flux characteristics of poplar plantations and crop communities in the Dongting Lake area during the growing season and their correlation with hydrothermal conditions,soil respiration rate was monitored at fixed sites and time points with an LI-8100 A automated soil flux system.Meanwhile,the surface temperature and soil temperature and humidity were measured. The soil respiration variation in the two different vegetation types and its correlation with environmental factors were analyzed. The results showed that in the growing season,the diurnal variation curves of soil respiration rate in the two different vegetation types showed a single peak variation,but there was certain difference in the appearance time of the peak. The peak of the crop appeared around11: 00 am,while the peak of soil respiration in the poplar appeared around 13: 00. The soil respiration rate of the poplar was also significantly higher than that of the crop,and the average difference of soil respiration rate between the two was 3. 09 and 3. 55 μmol/( m^2·s) in April and August,respectively. Temperature and soil moisture were the main factors affecting soil respiration of the poplar plantation and crop community. Temperature had a greater effect on the soil respiration of the crop community,and soil humidity had a greater impact on soil respiration in the poplar plantation,showing a correlation coefficient reaching 0. 952.展开更多
Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these syst...Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these systems' annual carbon budgets.However,little information exists on soil CO2 efflux during the non-growing season from alpine ecosystems.Therefore,comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of estimating ecosystem carbon budgets,as well as predicting the response of soil CO2 efflux to climate changes.In this study,we measured soil CO2 efflux and its spatial and temporal changes for different altitudes during the non-growing season in an alpine meadow located in the Qilian Mountains,Northwest China.Field experiments on the soil CO2 efflux of alpine meadow from the Qilian Mountains were conducted along an elevation gradient from October 2010 to April 2011.We measured the soil CO2 efflux,and analyzed the effects of soil water content and soil temperature on this measure.The results show that soil CO2 efflux gradually decreased along the elevation gradient during the non-growing season.The daily variation of soil CO2 efflux appeared as a single-peak curve.The soil CO2 efflux was low at night,with the lowest value occurring between 02:00-06:00.Then,values started to rise rapidly between 07:00-08:30,and then descend again between 16:00-18:30.The peak soil CO2 efflux appeared from 11:00 to 16:00.The soil CO2 efflux values gradually decreased from October to February of the next year and started to increase in March.Non-growing season Q10 (the multiplier to the respiration rate for a 10℃ increase in temperature) was increased with raising altitude and average Q10 of the Qilian Mountains was generally higher than the average growing season Q10 of the Heihe River Basin.Seasonally,non-growing season soil CO2 efflux was relatively high in October and early spring and low in the winter.The soil CO2 efflux was positively correlated with soil temperature and soil water content.Our results indicate that in alpine ecosystems,soil CO2 efflux continues throughout the non-growing season,and soil respiration is an important component of annual soil CO2 efflux.展开更多
Thus far, measurements and estimations of actual evapotranspiration(ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphra...Thus far, measurements and estimations of actual evapotranspiration(ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace(S–W) model. Simulated ET values were compared to those of the eddy-covariance(EC) method on a 1 h interval. With a root mean square error(RMSE),relative error(RE) and mean absolute error(MAE) of0.192, 3.100 and 0.165 mm h-1, respectively, model performance was not satisfactory. In particular, on days with strong winds(Sep. 11–13), deviations between simulated and observed ET values increased to 0.275, 0.878 and0.251 mm h-1, RMSE, RE and MAE respectively. These values were significantly greater than those in other study periods and were most likely owing to sharp increases in wind speed. As a result, there were substantial advective effects, which is not consistent with the assumption of the S–W model that there are no advective effects or mesoscale circulation patterns induced by surface discontinuities.展开更多
Potato crop is the fourth main food crops in the world after maize, rice and wheat. It is characterized by specific temperature requirements and develops best at about 20°C. Forecasts of global warming prompt us ...Potato crop is the fourth main food crops in the world after maize, rice and wheat. It is characterized by specific temperature requirements and develops best at about 20°C. Forecasts of global warming prompt us to study the tolerance of potato genotypes to heat during the growing season. The aim of this work was to assess the response of chosen potato cultivars to high temperature during the different stages of plant growth under conditions of good soil moisture and drought. The impact of high temperature 32°C/25°C on potato plants was determined in pot experiment in three growth stages. A main measure of tolerance of the potato cultivars to high temperature during the growing season was an evaluation of the yield in relation to the Control combination. Here we demonstrated that tested potato cultivar’s response to high temperature during the growing season is dependent on the growth stage. The earlier it occurs, the more negative its impact on the growth and yield of potatoes is.展开更多
[Objective] The aim was to study the precipitation changes and agricultural flood and drought degree of crops in Dalian City in recent 60 years. [Method] The monthly precipitation and average temperature data from Apr...[Objective] The aim was to study the precipitation changes and agricultural flood and drought degree of crops in Dalian City in recent 60 years. [Method] The monthly precipitation and average temperature data from April to October during 1951-2010 in Dalian observation station were selected. By dint of linear regression, climate tendency rate and humidity index, the growth changes and agricultural flood and drought degree of crops in recent 60 years in Dalian City were expounded from the aspects of natural precipitation tendency changes and agricultural water satisfaction degree of crops in growth period. [Result] In recent 60 years, the precipitation of crops during growth period in Dalian City had decreasing tendency. The inclination rate was -15.888 m/10 a. Precipitation decreased 95.3 mm in recent 60 years; precipitation increased a little in spring and decreased a lot in summer, then decreased in autumn. The monthly precipitation in each month distributed unevenly. Precipitation in July and August increased, taking account of 53.8% of the total precipitation during the growth period of crops. The K value of humidity index during the growth period of crops in Dalian in recent 60 years was 0.90 in general. It was light drought climate. The humidity index was decreasing. Climate developed toward drought direction; the drought occurrence frequency was 59%. It was mild drought climate in spring and autumn. The climate was generally wet in summer. Seen from the yearly means, besides of July and August, it reached mild drought degree in other months. [Conclusion] The study provided reference for the regional agricultural production, agricultural structure adjustment and drought and flood disaster prevention.展开更多
Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrublan...Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrubland,evergreen needleleaf forest and mixed forest) in the Northern Hemisphere, the start of growing season (SGS) hasbeen found obviously advanced in the past years, greatly contributed by the faster melting rate of seasonal snow.It is manifested that significantly positive correlation has been found between SGS and May snow depth for openshrubs, March and April snow depth for evergreen needleleaf forests and March snow depth for mixed forests.However, such close association is not appeared in all the climate conditions of same vegetation. In the future,as the rate of melting snow becomes faster in the high emission of greenhouse gasses than the current situation,continuously advanced SGS will accelerate the change of vegetation distribution in the Northern Hemisphere.These findings offer insights into understanding the effect from seasonal snow on vegetation and promote thesustainable utilization of regional vegetation in the Northern Hemisphere.展开更多
The relationships between vegetation and environmental factors have always been a core concern of ecologists.The dynamic characteristics of plant communities during the growing season can directly reflect these relati...The relationships between vegetation and environmental factors have always been a core concern of ecologists.The dynamic characteristics of plant communities during the growing season can directly reflect these relation-ships,so we examined this issue for three typical ecosystems on the Tibetan Plateau.During the growing season,the dominant species remained stable while non-dominant species changed significantly in the alpine meadow and alpine steppe and a mono-dominant community was found in the temperate desert shrub.Due to the seasonal variations of temperature and soil water content,plant species diversity varied significantly during the growing season.Patrick richness,Pielou evenness and Simpson diversity indices differed significantly in the alpine meadow and alpine steppe.The total biomass of these three ecosystems was the largest during the middle growing season.Biomass was greater in the alpine meadow than the alpine steeps or temperature desert.The root-to-shoot ratio was the lowest during the middle growing season for the alpine meadow and alpine steppe and largest during the early growing season for temperate desert shrub.RDA showed the belowground and total biomass were greatly affected by soil physicochemical factors.Multiple linear stepwise regression showed the above ground biomass was greatly affected by relative atmospheric humidity and belowground and total biomass were greatly affected by soil organic carbon,total nitrogen at 0-20 cm soil depth and pH at 10-20 cm soil depth.These findings pro-vide insights into understanding the relationships between vegetation and environmental factors and promote the sustainable utilization of local grasslands on the Tibetan Plateau.展开更多
Based on the observation data of the average temperature and precipitation of 8 national meteorological stations in the northwest region of Liaoning Province from April to October during 1961-2015,methods such as line...Based on the observation data of the average temperature and precipitation of 8 national meteorological stations in the northwest region of Liaoning Province from April to October during 1961-2015,methods such as linear trend estimation,moving average,standard deviation and Mann-Kendall test are used to analyze the characteristics of average temperature and precipitation during the crop growing season in northwestern Liaoning.The results show that the average temperature during the crop growing season in the study area showed an upward trend,and the climate tendency rate was 0.193 ℃/10 a( P < 0.01).The largest contribution rate to temperature increase was in September,with a climate tendency rate of 0.27 ℃/10 a;the smallest contribution rate to the temperature increase was in July,with a climate tendency rate of 0.10 ℃/10 a.The warming trend was the most obvious in the second base year,with a climate tendency rate of 0.413 ℃/10 a( P < 0.01).The temperature was the lowest in the 1970s and the highest in the 2010s.The warming trend changed suddenly in 1996,and the sudden change reached a significant level of α = 0.05 after 2002.Precipitation was generally decreased,and the climate tendency rate was -7.68 mm/10 a.The decrease in precipitation was the most in July,and the climate tendency rate was -12.08 mm/10 a.The average temperature in the four base years failed to pass the correlation significance test.Among them,it showed an increasing trend in the second and third base year and a decreasing trend in the first and fourth base year.Rainfall was the highest in the 1960s and the lowest in the 1980s.After the abrupt change in 2002,precipitation decreased significantly.The research results provide reference for effective utilization of climate resources,rational adjustment of agricultural planting structure,and improvement of ecological environment quality.展开更多
Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of cl...Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of climate change on Frost-free days in winter is distinctive. The average annual temperature is going upward but the extreme increase is in the winter temperature. Winter average temperature is going up by about 2˚C. However, extreme daily minimum temperature is going up by more than 3˚C. This climate effect has a great impact on the nature of precipitation and length of frost-free days. The snowfall over winter months is decreasing and the rainfall is increasing. However, the number of frost-free days during late fall months, early winter months, late winter months and early spring months are increasing. This result reveals an increase in length of the growing season. This research focuses on the effect of change in climatic variables on Frost-free days in Southern Ontario. Therefore, special attention should be given to the effect of change in climate Frost-free conditions on length of crop growing in winter season for potential investigation.展开更多
Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming clima...Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming climate? In this study, we addressed the question by investigating the relationship between net primary productivity of leaves (NPP<sub>leaf</sub>) and GSL for various tundra ecosystems. We quantified NPP<sub>leaf</sub> and GSL using long-term satellite data and field measurements. Our results indicated that the relationship was not significant (i.e., decoupled) for 44% to 64% of tundra classes in the southern Canadian Arctic, but significant for all classes in the northern Canadian Arctic. To better understand the causes of the decoupling, we further decomposed the relationship into two components: the correspondence of interannual variations and the agreement of long- term trends. We found that the longer the mean GSL for a tundra class, the poorer the correspondence between their interannual variations. Soil moisture limitation further decoupled the relationship by deteriorating the agreement of long-term trends. Consequently, the decoupling between NPP<sub>leaf</sub> and GSL would be more likely to occur under a warming climate if the tundra class had a mean GSL > 116 (or 123) days with a dry (or moist) soil moisture regime.展开更多
基金the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC3088)the Hunan Provincial Natural Science Foundation of China(Grant No.2023JJ40309)the National Natural Science Foundation of China(Grant No.32001470).
文摘Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short-growthduration and higher yields driven by higher dry matter production. To make clear the variations in dry matterproduction across seasons, four early-season rice varieties were chosen for late-season transplantation. The grainyield, dry matter accumulation, leaf photosynthetic, and leaf stomatal properties were studied. It was observedthat the average yields of these four varieties in the late season were 33% greater, despite a reduced growth periodof 13 days in comparison with the early season. Furthermore, there was a notable increase in both total and postheadingdry matter production during the late season. The leaf net photosynthetic rate, stomatal area, stomatalwidth, and stomatal length were higher in the late season. Despite no significant difference in stomatal densitybetween seasons, strong positive linear relationships were observed between net photosynthetic rate and stomatalconductance, and between stomatal conductance and area. These relationships demonstrate that the increase ofthe stomatal width and length of the leaves in the late season leads to an increase in the stomatal area, therebyincreasing the stomatal conductance and enhancing the photosynthesis of the leaves. Consequently, this leads togreater dry matter production and a higher yield compared to the early season. Therefore, when breeding newhigh-yielding and short-growing varieties, the large stomatal area can be used as a reference index.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金Supported by Special Fund for Climate Change of China Meteorological Administration(CCSF-09-13)Special Fund for Researchof Nonprofit Sector(meteorology)(GYHY200706030)~~
文摘[Objective] The aims were to understand variation characteristics of water resources and provide theoretical guidance for the formulation of agricultural irrigation methods.[Method] Taking the precipitation records during crop growing season(from April to September)observed by 177 weather stations from 1971 to 2008 in the three provinces of Northeast China(Heilongjiang,Jilin and Liaoning)as research data,annual change and spatial distribution characteristics of precipitation during crop growing season were analyzed by means of small grid interpolation and climatic trend rate.[Result] The precipitation during crop growing season general exhibited the decreasing trend and the precipitation trend rate was-8.6 mm/10a in Northeast China.In addition,there was lack of rain from 1971 to 1980 and relatively abundant of rain during 1981 and 1990 respectively.Moreover,the precipitation obviously exhibited decreasing trend from 1991 to 2008.But the decreasing trend was inconsistent in spatial distributions,that was,the precipitation slightly increased in relatively rainless areas and obviously decreased in relatively rainy areas.[Conclusion] The areas with obvious decreasing trend of precipitation during crop growing season are the main grain producing zones in Northeast China,so the problem of food production security caused by the precipitation changes should be paid enough attention.
文摘Based on the conventional meteorological data of temperature,accumulated temperature,precipitation,sunshine,frozen soil and frost-free period from five stations(including Liaozhong,Kaiyuan,Dawa,Donggang and Zhuanghe)in Liaoning Province from April to September during 1960-2009,the climatic changes in growing season in rice producing area of Liaoning Province were analyzed.The results showed that average temperature,frost-free period and accumulated temperature showed increase trend in growing season in rice producing area over the past 50 years,while average maximum depth of frozen soil,precipitation and sunshine duration went down with fluctuation.
基金Supported by the Science and Technology Project of Food Production in Jiangxi Province(2006BAD02A04)~~
文摘[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.
基金supported by the National Natural Science Foundation of China(41571044,41401661,41001283)the Climate Change Special Fund of the China Meteorological Administration(CCSF201716)the China Clean Development Mechanism(CDM)Fund Project(2012043)
文摘Researching into changes in thermal growing season has been one of the most important scientific issues in studies of the impact of global climate change on terrestrial ecosystems. However, few studies investigated the differences under various definitions of thermal growing season and compared the trends of thermal growing season in different parts of China. Based on the daily mean air temperatures collected from 877 meteorological stations over northern China from 1961 to 2015, we investigated the variations of the thermal growing season parameters including the onset, ending and duration of the growing season using the methods of differential analysis, trend analysis, comparative analysis, and Kriging interpolation technique. Results indicate that the differences of the maximum values of those indices for the thermal growing season were significant, while they were insignificant for the mean values. For indices with the same length of the spells exceeding 5°C, frost criterion had a significant effect on the differences of the maximum values. The differences of the mean values between frost and non-frost indices were also slight, even smaller than those from the different lengths of the spells. Temporally, the starting date of the thermal growing season advanced by 10.0–11.0 days, while the ending dates delayed by 5.0–6.0 days during the period 1961–2015. Consequently, the duration of the thermal growing season was prolonged 15.0–16.0 days. Spatially, the advanced onset of the thermal growing season occurred in the southwestern, eastern, and northeastern parts of northern China, whereas the delayed ending of the thermal growing season appeared in the western part, and the length of the thermal growing season was prolonged significantly in the vast majority of northern China. The trend values of the thermal growing season were affected by altitude. The magnitude of the earlier onset of the thermal growing season decreased, and that of the later ending increased rapidly as the altitude increased, causing the magnitude of the prolonged growing season increased correspondingly. Comparing the applicability of selected indices and considering the impacts of frost on the definitions are important and necessary for determining the timing and length of the thermal growing season in northern China.
基金This work was supported by the National Key R&D Program of China(2016YFD0300509)the Earmarked Fund for China Agriculture Research System(CARS-01).
文摘Amylose content and starch granule size in grains influence rice quality,which differs between the early(ES)and late season(LS).The objective of this study was to determine the variation of amylose content and starch granule size between seasons and find the main reasons(e.g.,temperature and solar radiation)for the observed variation.Field experiments with six rice varieties(three high and three low amylose content rice)planted in the ES and LS were conducted in 2016 and 2017,respectively.The mean temperatures during the filling stage were higher in ES,however,the daily temperatures at 7-10 days after flowering(DAF)in 2016,and at 5-10,13-14 DAF in 2017 were higher in LS.The results showed that amylose content in LS was lower than in ES with high amylose content rice varieties(HACV);the opposite trend occurred with low amylose content rice varieties(LACV).The mean starch granule diameter was higher in LS than ES in 2016,but the opposite result occurred in 2017 with all rice.Our results suggest that higher temperatures increased and decreased the amylose content in HACV and LACV,respectively.Temperatures at 5-15 DAF were important for the formation of starch granules:lower temperatures during 10-14 DAF increased the proportion of larger starch granules(d>6.21μm,some with d>13.3μm),and higher temperatures at 5-6 DAF increased the proportion of starch granules with diameter 4.24-6.21μm.
基金financially supported by the National Basic Research Program of China(2010CB951501)
文摘To determine the potential effects of climate change on crop phenological development and productivity, an integrated analysis was conducted based on the observed climatic and phenological records of Northeast China from 1992 to 2012. A set of quality assurance procedures, including repeated record checks, agro-meteorological station selection, internal consistency checks, temporal outlier checks, spatial outlier checks, and interpolation of missing data, were designed and applied to the phenology datasets of spring maize and paddy rice. Our results indicated that almost all phenological dates of spring maize and paddy rice became increasingly delayed from 1992 to 2012, The duration of the growing season was prolonged, particularly for the grain-filling stage (GS3). The prolonged growing season was beneficial to productivity. For spring maize, the average precipitation during GS3 decreased at a rate of 27.46 mm/decade, and the annual accumulated temperature over 10℃ increased at a rate of 31.07℃/ decade. Farmers initiatively adjusted crop cultivars and selected drought-resistant crops to cope with the challenges of drought.
基金supported by the CAS Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues (Grant No. XDA05090000)City U Strategic Research (Grant No. 7004164)the National Natural Science Foundation of China (Project No. 41405082)
文摘It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season (SOS) across the globe during the 20th century. Projections of further changes in the SOS for the 21st century under certain emissions scenarios (Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS (defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982-2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21st century. By around 2040-59, the SOS will have advanced by -4.7 days under RCP2.6, -8.4 days under RCP4.5, and -10.1 days under RCPS.5, relative to 1985-2004. By 2080-99, it will have advanced by -4.3 days under RCP2.6, -11.3 days under RCP4.5, and -21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity, the larger the date-shift-rate of the SOS.
基金supported by the National Natural Science Foundation of China(Grant Nos.41475078,41405082,51339004,and 91425304)
文摘The contribution of urbanization to the changes in growing season indices(e.g.,the start date of the growing season,Ds)in Shanghai,eastern China,for the period 1873–2013 is assessed.The urban-related Ds advancement(referred to as the urbanization contribution,UC)is reconstructed based on the changing urban-land fraction within a grid box around Shanghai for 1873–2013.After removing the UC from the raw Ds time series,the secular trend(ST)representing the long-term climatic warming and multidecadal variability(MDV)representing an oscillatory component with a period of several decades are obtained by using the Ensemble Empirical Mode Decomposition(EEMD)method.Results show that the UC is comparable with the contribution of the ST for the period 1873–2013,when Ds exhibits an advancing rate of about 0.44 days per decade.MDV plays an important role in regulating changes in Ds on the decadal timescale,e.g.,with a contribution of about 56.1%for1981–2013.
基金Supported by National Key Research and Development Program(2016YFD0600402)Key Research and Development Program of Hunan Province(2016NK2160)Forestry Science and Technology Program of Hunan Province(XLK201657)
文摘In order to ascertain the soil carbon flux characteristics of poplar plantations and crop communities in the Dongting Lake area during the growing season and their correlation with hydrothermal conditions,soil respiration rate was monitored at fixed sites and time points with an LI-8100 A automated soil flux system.Meanwhile,the surface temperature and soil temperature and humidity were measured. The soil respiration variation in the two different vegetation types and its correlation with environmental factors were analyzed. The results showed that in the growing season,the diurnal variation curves of soil respiration rate in the two different vegetation types showed a single peak variation,but there was certain difference in the appearance time of the peak. The peak of the crop appeared around11: 00 am,while the peak of soil respiration in the poplar appeared around 13: 00. The soil respiration rate of the poplar was also significantly higher than that of the crop,and the average difference of soil respiration rate between the two was 3. 09 and 3. 55 μmol/( m^2·s) in April and August,respectively. Temperature and soil moisture were the main factors affecting soil respiration of the poplar plantation and crop community. Temperature had a greater effect on the soil respiration of the crop community,and soil humidity had a greater impact on soil respiration in the poplar plantation,showing a correlation coefficient reaching 0. 952.
基金funded by the National Natural Science Foundation of China(31270482,41101026,91025002)the Natural Science Foundation of Gansu Province(1107RJZA089)+1 种基金the West Light Foundation of the Chinese Academy of Sciencesthe National Key Technology R & D Program(2012BAC08B05)
文摘Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these systems' annual carbon budgets.However,little information exists on soil CO2 efflux during the non-growing season from alpine ecosystems.Therefore,comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of estimating ecosystem carbon budgets,as well as predicting the response of soil CO2 efflux to climate changes.In this study,we measured soil CO2 efflux and its spatial and temporal changes for different altitudes during the non-growing season in an alpine meadow located in the Qilian Mountains,Northwest China.Field experiments on the soil CO2 efflux of alpine meadow from the Qilian Mountains were conducted along an elevation gradient from October 2010 to April 2011.We measured the soil CO2 efflux,and analyzed the effects of soil water content and soil temperature on this measure.The results show that soil CO2 efflux gradually decreased along the elevation gradient during the non-growing season.The daily variation of soil CO2 efflux appeared as a single-peak curve.The soil CO2 efflux was low at night,with the lowest value occurring between 02:00-06:00.Then,values started to rise rapidly between 07:00-08:30,and then descend again between 16:00-18:30.The peak soil CO2 efflux appeared from 11:00 to 16:00.The soil CO2 efflux values gradually decreased from October to February of the next year and started to increase in March.Non-growing season Q10 (the multiplier to the respiration rate for a 10℃ increase in temperature) was increased with raising altitude and average Q10 of the Qilian Mountains was generally higher than the average growing season Q10 of the Heihe River Basin.Seasonally,non-growing season soil CO2 efflux was relatively high in October and early spring and low in the winter.The soil CO2 efflux was positively correlated with soil temperature and soil water content.Our results indicate that in alpine ecosystems,soil CO2 efflux continues throughout the non-growing season,and soil respiration is an important component of annual soil CO2 efflux.
基金supported by the Chinese National Nature Science Fund(no.41271037)the Youth Foundation of National Natural Science of China(no.41401033)
文摘Thus far, measurements and estimations of actual evapotranspiration(ET) in extremely arid areas are still insufficient. Based on successive observations from June–September 2014, we simulated ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region of northwest China using the Shuttleworth–Wallace(S–W) model. Simulated ET values were compared to those of the eddy-covariance(EC) method on a 1 h interval. With a root mean square error(RMSE),relative error(RE) and mean absolute error(MAE) of0.192, 3.100 and 0.165 mm h-1, respectively, model performance was not satisfactory. In particular, on days with strong winds(Sep. 11–13), deviations between simulated and observed ET values increased to 0.275, 0.878 and0.251 mm h-1, RMSE, RE and MAE respectively. These values were significantly greater than those in other study periods and were most likely owing to sharp increases in wind speed. As a result, there were substantial advective effects, which is not consistent with the assumption of the S–W model that there are no advective effects or mesoscale circulation patterns induced by surface discontinuities.
文摘Potato crop is the fourth main food crops in the world after maize, rice and wheat. It is characterized by specific temperature requirements and develops best at about 20°C. Forecasts of global warming prompt us to study the tolerance of potato genotypes to heat during the growing season. The aim of this work was to assess the response of chosen potato cultivars to high temperature during the different stages of plant growth under conditions of good soil moisture and drought. The impact of high temperature 32°C/25°C on potato plants was determined in pot experiment in three growth stages. A main measure of tolerance of the potato cultivars to high temperature during the growing season was an evaluation of the yield in relation to the Control combination. Here we demonstrated that tested potato cultivar’s response to high temperature during the growing season is dependent on the growth stage. The earlier it occurs, the more negative its impact on the growth and yield of potatoes is.
文摘[Objective] The aim was to study the precipitation changes and agricultural flood and drought degree of crops in Dalian City in recent 60 years. [Method] The monthly precipitation and average temperature data from April to October during 1951-2010 in Dalian observation station were selected. By dint of linear regression, climate tendency rate and humidity index, the growth changes and agricultural flood and drought degree of crops in recent 60 years in Dalian City were expounded from the aspects of natural precipitation tendency changes and agricultural water satisfaction degree of crops in growth period. [Result] In recent 60 years, the precipitation of crops during growth period in Dalian City had decreasing tendency. The inclination rate was -15.888 m/10 a. Precipitation decreased 95.3 mm in recent 60 years; precipitation increased a little in spring and decreased a lot in summer, then decreased in autumn. The monthly precipitation in each month distributed unevenly. Precipitation in July and August increased, taking account of 53.8% of the total precipitation during the growth period of crops. The K value of humidity index during the growth period of crops in Dalian in recent 60 years was 0.90 in general. It was light drought climate. The humidity index was decreasing. Climate developed toward drought direction; the drought occurrence frequency was 59%. It was mild drought climate in spring and autumn. The climate was generally wet in summer. Seen from the yearly means, besides of July and August, it reached mild drought degree in other months. [Conclusion] The study provided reference for the regional agricultural production, agricultural structure adjustment and drought and flood disaster prevention.
基金This work is supported by the National Natural Science Foundation of China(Grant No.42041004 and 41991231)the“Innovation Star”Project for Outstanding Postgraduates of Gansu Province(Grant No.2022CXZX-107)the Central Universities(Grant No.lzujbky-2019-kb30).
文摘Under global warming, seasonal snow takes faster melting rate than before, which greatly changes the hydro-logical cycle. In this study, by targeting three typical seasonal snow-covered land types (i.e., open shrubland,evergreen needleleaf forest and mixed forest) in the Northern Hemisphere, the start of growing season (SGS) hasbeen found obviously advanced in the past years, greatly contributed by the faster melting rate of seasonal snow.It is manifested that significantly positive correlation has been found between SGS and May snow depth for openshrubs, March and April snow depth for evergreen needleleaf forests and March snow depth for mixed forests.However, such close association is not appeared in all the climate conditions of same vegetation. In the future,as the rate of melting snow becomes faster in the high emission of greenhouse gasses than the current situation,continuously advanced SGS will accelerate the change of vegetation distribution in the Northern Hemisphere.These findings offer insights into understanding the effect from seasonal snow on vegetation and promote thesustainable utilization of regional vegetation in the Northern Hemisphere.
基金This research was funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405)National Natural Science Foundation of China(Grant No.41771325,41171445).
文摘The relationships between vegetation and environmental factors have always been a core concern of ecologists.The dynamic characteristics of plant communities during the growing season can directly reflect these relation-ships,so we examined this issue for three typical ecosystems on the Tibetan Plateau.During the growing season,the dominant species remained stable while non-dominant species changed significantly in the alpine meadow and alpine steppe and a mono-dominant community was found in the temperate desert shrub.Due to the seasonal variations of temperature and soil water content,plant species diversity varied significantly during the growing season.Patrick richness,Pielou evenness and Simpson diversity indices differed significantly in the alpine meadow and alpine steppe.The total biomass of these three ecosystems was the largest during the middle growing season.Biomass was greater in the alpine meadow than the alpine steeps or temperature desert.The root-to-shoot ratio was the lowest during the middle growing season for the alpine meadow and alpine steppe and largest during the early growing season for temperate desert shrub.RDA showed the belowground and total biomass were greatly affected by soil physicochemical factors.Multiple linear stepwise regression showed the above ground biomass was greatly affected by relative atmospheric humidity and belowground and total biomass were greatly affected by soil organic carbon,total nitrogen at 0-20 cm soil depth and pH at 10-20 cm soil depth.These findings pro-vide insights into understanding the relationships between vegetation and environmental factors and promote the sustainable utilization of local grasslands on the Tibetan Plateau.
基金Supported by Agriculture Research and Achievement Industrialization Project from Department of Science and Technology of Liaoning Province(2014210003)Special Project for Scientific Research on Social Development Program in Fuxin City,Liaoning Province(20151305)。
文摘Based on the observation data of the average temperature and precipitation of 8 national meteorological stations in the northwest region of Liaoning Province from April to October during 1961-2015,methods such as linear trend estimation,moving average,standard deviation and Mann-Kendall test are used to analyze the characteristics of average temperature and precipitation during the crop growing season in northwestern Liaoning.The results show that the average temperature during the crop growing season in the study area showed an upward trend,and the climate tendency rate was 0.193 ℃/10 a( P < 0.01).The largest contribution rate to temperature increase was in September,with a climate tendency rate of 0.27 ℃/10 a;the smallest contribution rate to the temperature increase was in July,with a climate tendency rate of 0.10 ℃/10 a.The warming trend was the most obvious in the second base year,with a climate tendency rate of 0.413 ℃/10 a( P < 0.01).The temperature was the lowest in the 1970s and the highest in the 2010s.The warming trend changed suddenly in 1996,and the sudden change reached a significant level of α = 0.05 after 2002.Precipitation was generally decreased,and the climate tendency rate was -7.68 mm/10 a.The decrease in precipitation was the most in July,and the climate tendency rate was -12.08 mm/10 a.The average temperature in the four base years failed to pass the correlation significance test.Among them,it showed an increasing trend in the second and third base year and a decreasing trend in the first and fourth base year.Rainfall was the highest in the 1960s and the lowest in the 1980s.After the abrupt change in 2002,precipitation decreased significantly.The research results provide reference for effective utilization of climate resources,rational adjustment of agricultural planting structure,and improvement of ecological environment quality.
文摘Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of climate change on Frost-free days in winter is distinctive. The average annual temperature is going upward but the extreme increase is in the winter temperature. Winter average temperature is going up by about 2˚C. However, extreme daily minimum temperature is going up by more than 3˚C. This climate effect has a great impact on the nature of precipitation and length of frost-free days. The snowfall over winter months is decreasing and the rainfall is increasing. However, the number of frost-free days during late fall months, early winter months, late winter months and early spring months are increasing. This result reveals an increase in length of the growing season. This research focuses on the effect of change in climatic variables on Frost-free days in Southern Ontario. Therefore, special attention should be given to the effect of change in climate Frost-free conditions on length of crop growing in winter season for potential investigation.
文摘Given the short duration of growing season in the Arctic, a strong correlation between plant productivity and growing season length (GSL) is conventionally assumed. Will this assumption hold true under a warming climate? In this study, we addressed the question by investigating the relationship between net primary productivity of leaves (NPP<sub>leaf</sub>) and GSL for various tundra ecosystems. We quantified NPP<sub>leaf</sub> and GSL using long-term satellite data and field measurements. Our results indicated that the relationship was not significant (i.e., decoupled) for 44% to 64% of tundra classes in the southern Canadian Arctic, but significant for all classes in the northern Canadian Arctic. To better understand the causes of the decoupling, we further decomposed the relationship into two components: the correspondence of interannual variations and the agreement of long- term trends. We found that the longer the mean GSL for a tundra class, the poorer the correspondence between their interannual variations. Soil moisture limitation further decoupled the relationship by deteriorating the agreement of long-term trends. Consequently, the decoupling between NPP<sub>leaf</sub> and GSL would be more likely to occur under a warming climate if the tundra class had a mean GSL > 116 (or 123) days with a dry (or moist) soil moisture regime.