Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement ...Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement of Scotch pine (P. sylvestris var. mongolica) seedlings brought by the plant beneficial fungus Trichoderma virens (J.H. Mill., Giddens and A.A. Foster) Arx and ectomycorrhizal fungus (Suillus luteus (L.) Roussel.) can also benefit Korean spruce seed- lings, we examined the effects of S. luteus and T. virens on the growth of P. koraiensis seedlings and drought resistance of P. sylvestris var. mongolica in peat soils. The two fungi were added to sterilized peat soil in pots, and the plants were grown for 4 months. Seedling growth and physiological variables, including mycorrhizal colonization rate of roots, biomass, and chlorophyll content, were examined. The colonization rate of the mycorrhizal fungus on P. koraiensis exceeded 65 %, and the synergism between S. luteus and T. virens enhanced most of the variables for P. koraiensis seedlings after inoculation with S. luteus then 30 days later with T. virens as in our published results for seedlings of P. sylvestris var. mongolica. When seedlings of P. sylvestris var. mongolica were inoculated with this sequence, they became more drought tolerant. T. virens also induced S. luteus to produce -l,3-glucanase and chitinase. This inocu- lation sequence at planting can thus improve the quality of P. sylvestris var. mongolica and P. koraiensis seedlings and substantiates our previous results.展开更多
Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotro...Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1(file # 864/2016-PR) on September 14, 2016.展开更多
Pinus elliottii is an exotic afforestation pine extensively distributed in southern parts of China.In order to understand whether endophytic fungi can affect seedling growth of P.elliottii,Piriformospora indica(Pi),Fu...Pinus elliottii is an exotic afforestation pine extensively distributed in southern parts of China.In order to understand whether endophytic fungi can affect seedling growth of P.elliottii,Piriformospora indica(Pi),Funnelifcrmis mosseae(Fm),and Diversispora tortuosa(Dt)were inoculated respectively,and the non-inoculated group was set as control.The growth indexes,the contents of soluble sugar and soluble protein,and plant endogenous hormone levels in the leaves of P.elliottii,were analyzed.The results showed that Fm,Dt and Pi colonized the P.elliottii roots to form mycorrhizal structure and chlamydospores arranged in beads respectively.Three fungal inoculants exhibited the stimulated growth responses,whilst Dt illustrated the most positive effect on plant height,single fresh weight,trunk diameter and root system structure,compared with the control.On the other hand,the soluble sugar and soluble protein contents were increased distinctively in mycorrhizal plants.The endogenous IAA,GA3,ZR contents were increased,while the ABA contents were reduced in mycorrhizal plants versus non-mycorrhizal plants.The fungi-induced endogenous hormone changes triggered plant growth improvement of P.elliottii seedlings.This research unraveled the positive effect of AM fungi and P.indica on growth of pine seedlings,while,more application of endophytic fungi to fields needs to be explored.展开更多
Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requiremen...Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requirements on all the branches in the展开更多
Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells...Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells (MSCs). Methods Human VEGF121 cDNA was amplified with polymerase chain reaction (PCR) from pCD/hVEGF121 and was inserted into the eukaryotic expression vector pEGFP- C1. After being identified with PCR, double enzyme digestion and DNA sequencing. The recombinant plasmid pEGFP/hVEGF121 was transferred into rat MSCs with lipofectamine. The expression of EGFP/VEGF121 fusion protein were detected with fluorescence microscope and immunocytochemical staining respectively. Results The recombinant plasmid was confirmed with PCR, double enzyme digestion and DNA sequencing. The fluoresce- nce microscope and immunocytochemical staining results showed that the EGFP and VEGF121 protein were expressed in MSCs 48 h after transfection. Conclusions The recombinant plasmid carrying EGFP and human VEGF was successfully constructed and expressed positively in rat MSCs. It offers a promise tool for further research on differentiation of MSCs and VEGF gene therapy for ischemial cardiovascular disease.展开更多
The Chinese economy will continue to be the spotlight for world economic growth China’s GDP will maintain a growth rate of about 8.9 percent in 2012 said the annual economic blue book released by the
Numerous studies have demonstrated that soil applications of biochar contribute to plant disease suppression and growth promotion.Here,we quantitatively evaluated the performance of biochars on plant disease suppressi...Numerous studies have demonstrated that soil applications of biochar contribute to plant disease suppression and growth promotion.Here,we quantitatively evaluated the performance of biochars on plant disease suppression and production using meta-analysis of literature data.The results indicated that biochar amendment dramatically reduced disease severity(DS)by 47.46%while increasing plant biomass by 44.05%.The highest disease suppression was achieved with soil application of straw-derived biochar compared to biochar from other feedstocks,while no significant increase in yield was found with straw-derived biochar.Biochars pyrolyzed at medium temperatures(350-600℃)facilitate both disease controlling and growth promotion.Soil application of biochars between 3 and 5%significantly decreased plant DS by 59.11%,and inverted U-shaped biochar dose/DS suppression curve and biochar dose/growth curve were observed.In cash crop fields,the DS of plants amended with biochar was reduced over 50%,which was significantly higher than that of grain crops and perennial trees.Furthermore,biochar performance on plant disease suppression was higher for airborne pathogens than for soilborne pathogens,possibly due to the systemic activation of plant defences by biochar amendment.Additionally,a reduction of DS by biochar was observed on plants grown in agricultural soils.Our work contributes to the standardization of biochar production and provides a reference for improving the function of biochar in disease control.展开更多
We investigated the effect of iron oxide nanoparticles(Fe_(3)O_(4)NPs,~17 nm in size)on the phenotype and metabolite changes in hemp(Cannabis sativa L.),an annual crop distributed worldwide.Hemp clones were grown in h...We investigated the effect of iron oxide nanoparticles(Fe_(3)O_(4)NPs,~17 nm in size)on the phenotype and metabolite changes in hemp(Cannabis sativa L.),an annual crop distributed worldwide.Hemp clones were grown in hydroponic cultures with Fe_(3)O_(4)NPs(50,100,200,or 500 mg/L)for four weeks.TEM and ICP-MS were used to determine Fe_(3)O_(4)NPs uptake and translocation.LC-MS-based metabolomics was employed to explore the deep insight into the effect of Fe_(3)O_(4)NPs on hemp plants.The results revealed that plant growth enhanced gradually with increasing concentrations of given NPs up to 200 mg/L,which improved the fresh weight and dry weight by 36.13%and 74.68%,respectively,compared to the control.Even at a high dose(500 mg/L),Fe_(3)O_(4)NPs promoted plant growth,including increased biomass and tissue length.NPs significantly increased the iron and chlorophyll content in plant tissues Increased catalase activity and reduced hydrogen peroxide content in hemp leaves suggested that the Fe_(3)O_(4)NPs activated the defense system.TEM showed that NPs were abundantly attached to the cell wall and dispersed throughout the root cells.Metabolomics revealed that Fe_(3)O_(4)NPs induced metabolic reprogramming in hemp leaves,including the up-regulation of carbohydrates and organic acids,and down-regulation of antioxidants,especially tetrahydrocannabinol(THC).The significantly up-regulated metabolites,including peonidin and 2-hydroxycinnamic acid,could be involved in photosynthesis in hemp plants.These results demonstrate the potential of Fe_(3)O_(4)NPs for promoting hemp growth and decreasing the THC content at low doses.展开更多
基金the National Natural Science Foundation of China (31170597, 31200484)the National Fiveyear Science and Technology Research Project (2012BAD19B0801)+1 种基金the Fundamental Research Funds for the Central Universities (2572014AA30)the National Forestry Bureau ‘‘948’’ Project (2009-4-39) for financial support
文摘Korean spruce (Picea koraiensis Sieb. E1 Zucc.) is one of the main afforestation species in northern China. Seedling quality is a critical factor at planting time. To test whether the synergistic growth enhancement of Scotch pine (P. sylvestris var. mongolica) seedlings brought by the plant beneficial fungus Trichoderma virens (J.H. Mill., Giddens and A.A. Foster) Arx and ectomycorrhizal fungus (Suillus luteus (L.) Roussel.) can also benefit Korean spruce seed- lings, we examined the effects of S. luteus and T. virens on the growth of P. koraiensis seedlings and drought resistance of P. sylvestris var. mongolica in peat soils. The two fungi were added to sterilized peat soil in pots, and the plants were grown for 4 months. Seedling growth and physiological variables, including mycorrhizal colonization rate of roots, biomass, and chlorophyll content, were examined. The colonization rate of the mycorrhizal fungus on P. koraiensis exceeded 65 %, and the synergism between S. luteus and T. virens enhanced most of the variables for P. koraiensis seedlings after inoculation with S. luteus then 30 days later with T. virens as in our published results for seedlings of P. sylvestris var. mongolica. When seedlings of P. sylvestris var. mongolica were inoculated with this sequence, they became more drought tolerant. T. virens also induced S. luteus to produce -l,3-glucanase and chitinase. This inocu- lation sequence at planting can thus improve the quality of P. sylvestris var. mongolica and P. koraiensis seedlings and substantiates our previous results.
基金supported by the research start-up and the MWU’s intramural grant(to MF)the Italian MURST-MIUR foundation(to SG and IP)
文摘Neurotrophins play a major role in the regulation of neuronal growth such as neurite sprouting or regeneration in response to nerve injuries. The role of nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor in maintaining the survival of peripheral neurons remains poorly understood. In regenerative medicine, different modalities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. This study was to investigate the influence of nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor on the growth of neurites using two in vitro models of dorsal root ganglia explants and dorsal root ganglia-derived primary cell dissociated cultures. Quantitative data showed that the total neurite length and tortuosity were differently influenced by trophic factors. Nerve growth factor and, indirectly, brain-derived neurotrophic factor stimulate the tortuous growth of sensory fibers and the formation of cell clusters. Neurotrophin-3, however, enhances neurite growth in terms of length and linearity allowing for a more organized and directed axonal elongation towards a peripheral target compared to the other growth factors. These findings could be of considerable importance for any clinical application of neurotrophic factors in peripheral nerve regeneration. Ethical approval was obtained from the Regione Piemonte Animal Ethics Committee ASLTO1(file # 864/2016-PR) on September 14, 2016.
基金We would like to thank the fund support of the Ideological and Political Course and Curriculum and Ideological and Political Demonstration Construction Project of Yangtze University(2020,No.65)We would also thank the help provided by the Open Fund of Institute of Root Biology of Yangtze University,which supported the purchase of AM fungi strain from Institute of Plant Nutrition and Resources,Beijing Academy of Agriculture and Forestry Sciences.
文摘Pinus elliottii is an exotic afforestation pine extensively distributed in southern parts of China.In order to understand whether endophytic fungi can affect seedling growth of P.elliottii,Piriformospora indica(Pi),Funnelifcrmis mosseae(Fm),and Diversispora tortuosa(Dt)were inoculated respectively,and the non-inoculated group was set as control.The growth indexes,the contents of soluble sugar and soluble protein,and plant endogenous hormone levels in the leaves of P.elliottii,were analyzed.The results showed that Fm,Dt and Pi colonized the P.elliottii roots to form mycorrhizal structure and chlamydospores arranged in beads respectively.Three fungal inoculants exhibited the stimulated growth responses,whilst Dt illustrated the most positive effect on plant height,single fresh weight,trunk diameter and root system structure,compared with the control.On the other hand,the soluble sugar and soluble protein contents were increased distinctively in mycorrhizal plants.The endogenous IAA,GA3,ZR contents were increased,while the ABA contents were reduced in mycorrhizal plants versus non-mycorrhizal plants.The fungi-induced endogenous hormone changes triggered plant growth improvement of P.elliottii seedlings.This research unraveled the positive effect of AM fungi and P.indica on growth of pine seedlings,while,more application of endophytic fungi to fields needs to be explored.
文摘Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requirements on all the branches in the
文摘Objectives To construct a recombinant plasmid carrying enhanced green fluore- scent protein (EGFP) and human vascular endothelial growth factor (VEGF) 121 gene and detect its expre- ssion in rat mesenchymal stem cells (MSCs). Methods Human VEGF121 cDNA was amplified with polymerase chain reaction (PCR) from pCD/hVEGF121 and was inserted into the eukaryotic expression vector pEGFP- C1. After being identified with PCR, double enzyme digestion and DNA sequencing. The recombinant plasmid pEGFP/hVEGF121 was transferred into rat MSCs with lipofectamine. The expression of EGFP/VEGF121 fusion protein were detected with fluorescence microscope and immunocytochemical staining respectively. Results The recombinant plasmid was confirmed with PCR, double enzyme digestion and DNA sequencing. The fluoresce- nce microscope and immunocytochemical staining results showed that the EGFP and VEGF121 protein were expressed in MSCs 48 h after transfection. Conclusions The recombinant plasmid carrying EGFP and human VEGF was successfully constructed and expressed positively in rat MSCs. It offers a promise tool for further research on differentiation of MSCs and VEGF gene therapy for ischemial cardiovascular disease.
文摘The Chinese economy will continue to be the spotlight for world economic growth China’s GDP will maintain a growth rate of about 8.9 percent in 2012 said the annual economic blue book released by the
基金the National Natural Science Foundation of China(No.U20A2047,41907062)Changjiang Scholarship,Ministry of Education,Chinaand State Cultivation Base of Eco-agriculture for Southwest Mountainous Land,Southwest University.
文摘Numerous studies have demonstrated that soil applications of biochar contribute to plant disease suppression and growth promotion.Here,we quantitatively evaluated the performance of biochars on plant disease suppression and production using meta-analysis of literature data.The results indicated that biochar amendment dramatically reduced disease severity(DS)by 47.46%while increasing plant biomass by 44.05%.The highest disease suppression was achieved with soil application of straw-derived biochar compared to biochar from other feedstocks,while no significant increase in yield was found with straw-derived biochar.Biochars pyrolyzed at medium temperatures(350-600℃)facilitate both disease controlling and growth promotion.Soil application of biochars between 3 and 5%significantly decreased plant DS by 59.11%,and inverted U-shaped biochar dose/DS suppression curve and biochar dose/growth curve were observed.In cash crop fields,the DS of plants amended with biochar was reduced over 50%,which was significantly higher than that of grain crops and perennial trees.Furthermore,biochar performance on plant disease suppression was higher for airborne pathogens than for soilborne pathogens,possibly due to the systemic activation of plant defences by biochar amendment.Additionally,a reduction of DS by biochar was observed on plants grown in agricultural soils.Our work contributes to the standardization of biochar production and provides a reference for improving the function of biochar in disease control.
基金supported by the Natural Science Foundation of Hunan Province of China(No.2020JJ5643)the National Natural Science Foundation of China(No.31770341).
文摘We investigated the effect of iron oxide nanoparticles(Fe_(3)O_(4)NPs,~17 nm in size)on the phenotype and metabolite changes in hemp(Cannabis sativa L.),an annual crop distributed worldwide.Hemp clones were grown in hydroponic cultures with Fe_(3)O_(4)NPs(50,100,200,or 500 mg/L)for four weeks.TEM and ICP-MS were used to determine Fe_(3)O_(4)NPs uptake and translocation.LC-MS-based metabolomics was employed to explore the deep insight into the effect of Fe_(3)O_(4)NPs on hemp plants.The results revealed that plant growth enhanced gradually with increasing concentrations of given NPs up to 200 mg/L,which improved the fresh weight and dry weight by 36.13%and 74.68%,respectively,compared to the control.Even at a high dose(500 mg/L),Fe_(3)O_(4)NPs promoted plant growth,including increased biomass and tissue length.NPs significantly increased the iron and chlorophyll content in plant tissues Increased catalase activity and reduced hydrogen peroxide content in hemp leaves suggested that the Fe_(3)O_(4)NPs activated the defense system.TEM showed that NPs were abundantly attached to the cell wall and dispersed throughout the root cells.Metabolomics revealed that Fe_(3)O_(4)NPs induced metabolic reprogramming in hemp leaves,including the up-regulation of carbohydrates and organic acids,and down-regulation of antioxidants,especially tetrahydrocannabinol(THC).The significantly up-regulated metabolites,including peonidin and 2-hydroxycinnamic acid,could be involved in photosynthesis in hemp plants.These results demonstrate the potential of Fe_(3)O_(4)NPs for promoting hemp growth and decreasing the THC content at low doses.