期刊文献+
共找到199,542篇文章
< 1 2 250 >
每页显示 20 50 100
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord 被引量:1
1
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
Growth-associated protein 43 and neural cell adhesion molecule expression following bone marrow-derived mesenchymal stem cell transplantation in a rat model of ischemic brain injury 被引量:18
2
作者 Yu Peng Qimei Zhang +3 位作者 Hui You Weihua Zhuang Ying Zhang Chengyan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第13期975-980,共6页
BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated pr... BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule. 展开更多
关键词 growth-associated protein 43 neural cell adhesion molecule bone marrow-derived mesenchymal stem cell brain injury neural regeneration
下载PDF
Enriched environment upregulates growth-associated protein 43 expression in the hippocampus and enhances cognitive abilities in prenatally stressed rat offspring 被引量:3
3
作者 Zhengyu Zhang Hua Zhang +1 位作者 Baoling Du Zhiqiang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第25期1967-1973,共7页
In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we inv... In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we investigated the effects of enriched environment on cognitive abilities in prenatally stressed rat offspring, as well as the underlying mechanisms. Reverse transcription-PCR and western blot assay results revealed that growth-associated protein 43 mRNA and protein levels were upregulated on postnatal day 15 in the prenatal restraint stress group. Growth-associated protein 43 expression was significantly lower in the prenatal restraint stress group compared with the negative control and prenatal restraint stress plus enriched environment groups on postnatal days 30 and 50. Morris water maze test demonstrated that cognitive abilities were noticeably increased in rats from the prenatal restraint stress plus enriched environment group on postnatal day 50. These results indicate that enriched environment can improve the spatial learning and memory ability of prenatally stressed offspring by upregulating growth-associated protein 43 expression. 展开更多
关键词 prenatal restraint stress growth-associated protein 43 HIPPOCAMPUS Morris water maze enrichedenvironment COGNITION neural regeneration
下载PDF
Activation of Growth-associated Protein by Intragastric Brazilein in Motor Neuron of Spinal Cord Connected with Injured Sciatic Nerve in Mice 被引量:4
4
作者 CAO Jian LI Li-sen LIU Biao LIU Hao-yu ZHANG Hui ZHAO Ming-ming YIN Wei-tian 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期254-257,共4页
The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic ne... The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4―6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4―6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4―6 segments connected with injured sciatic nerve, which promotes nerve regeneration. 展开更多
关键词 Brazilein growth-associated protein(GAP-43) Injury of sciatic nerve Regeneration
下载PDF
Amyloid precursor protein and growth-associated protein 43 expression in brain white matter and spinal cord tissues in a rat model of experimental autoimmune encephalomyelitis 被引量:3
5
作者 Yizhou Wang Shuang Kou +6 位作者 Jingcheng Tang Ping Zhang Qiuxia Zhang Yan Liu Qi Zheng Hui Zhao Lei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第2期101-106,共6页
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and... Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons. 展开更多
关键词 amyloid precursor protein axonal regeneration central nervous system experimental autoimmune encephalomyelitis growth-associated protein 43
下载PDF
Effect of cyclovirobuxine D on human growth-associated protein 43 and neurocan expression in ischemic brain tissue of stroke-prone renovascular hypertensive rats 被引量:1
6
作者 Feng Tan Wei Gu +6 位作者 Saiying Wan Haike Wu Jinliang Wang Jingbo Sun Jiamao Cheng Xin Zhang Renfeng Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第4期394-397,共4页
BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit spr... BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit sprouting and elongation of the axonal growth cone. OBJECTIVE: To verify regulatory effects of cyclovirobuxine D (CVB-D) extracted from Chinese box branchlet on human growth-associated protein 43 (GAP-43), and neurocan expression in brain tissue of stroke-prone renovascular hypertensive (RHRSP) rats, at different time points after cerebral ischemia/reperfusion. DESIGN: Randomized grouping design and controlled animal study. SETTING: This study was performed at the Center of Guangdong Hospital of Traditional Chinese Medicine (a national key laboratory) from March 2003 to September 2006. MATERIALS: 100 healthy male Sprague-Dawley rats, aged 2 3 months and weighing 90-120 g, were selected for this study. CVB-D was provided by Nanjing Xiaoying Pharmaceutical Factory (Batch number: 307701). METHODS: The initial tip of renal arteries was clamped bilaterally for 10 weeks to establish the RHRSP model. 100 RHRSP rats were randomly divided into 4 groups: naive group (n = 10), sham surgery group (n = 10), CVB-D group (n = 40), and lesion group (n = 40). Rats in the naive group did not undergo any treatment, and cervical vessels of rats in the sham surgery group were exposed, but not blocked. The right middle cerebral artery of rats in the CVB-D group and lesion group were occluded to establish cerebral ischemia. Rats in the CVB-D group were intraperitoneally injected with CVB-D (6.48 mg/kg) every day and with saline (1.5 mL/injection) twice a day. Rats in the lesion group were intraperitoneally injected with saline (2 mL/injection). MAIN OUTCOME MEASURES: Immunohistochemistry was applied to detect GAP-43 and neurocan expression in the ischemic penumbra region of CVB-D and lesion brains at 2 hours post-cerebral ischemia and at 1, 7, 14, and 30 days post-perfusion (n = 10 at each time point). Similarly, GAP-43 and neurocan expression was detected in the right hemisphere of naive and sham-operated animals. The results were expressed as positive cells. RESULTS: A total of 100 rats were included in the final analysis. The number of GAP-43 positive cells increased in the CVB-D group 1, 7, 14, and 30 days post-cerebral ischemia/perfusion compared to the lesion group, as indicated by a significant difference between the CVB-D and lesion group (P 〈 0.054).01). The number of neurocan-positive cells decreased in the CVB-D group on the first day compared to the model group; however, there was no significant difference between the two groups (P 〉 0.05). On post-ischemia days 7, 14, and 30, the number of neurocan-positive cells in the CVB-D group was significantly less than in the lesion group (P 〈 0.05). Both, GAP-43 and neurocan expression was not detectable in brains of naive and sham-operated animals. CONCLUSION: CVB-D treatment up-regulated GAP-43 expression and down-regulated neurocan expression in the ischemic region of RHRSP rats. 展开更多
关键词 cerebral ischemia/perfusion human growth-associated protein 43 NEUROCAN cyclovirobuxine D rats
下载PDF
Preemptive analgesic effects of low-dose ketamine on growth-associated protein expression in dorsal root ganglion of chronic constriction injury model rats 被引量:1
7
作者 Shuyong Lin Chen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第4期354-357,共4页
BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different d... BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamine DESIGN: Randomized controlled animal study. SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated l-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES: GAP-43 expression in dorsal root ganglion was detected by immunohistochemistry and image analysis system, as well as semi-quantitative analysis. RESULTS: Thirty-five Sprague Dawley rats were included in the final analysis. Qualitative analysis: GAP-43 expression in the CCI group was higher than in the normal control group. Quantitative analysis: after three post-operative days, GAP-43 expression in the CCI group was significantly higher than in the normal control group (t = 22.919, 7.319, P 〈 0.05). GAP-43 expression in the low-dose and high-dose ketamine group was significantly lower than in the CCI group (t = 11.166, 26.474, P 〈 0.05). After seven postoperative days, GAP-43 expression in the low-dose and high-dose ketamine groups was significantly lower than in the CCI group (t = 2.382, 5.016, P 〈 0.05). CONCLUSION: Preoperative administration of ketamine inhibited the increased GAP-43 expression in dorsal root ganglion during neuropathic pain. 展开更多
关键词 growth-associated protein-43 neuropathic pain ketamlne sciatic nerve dorsal root ganglion
下载PDF
Neurofilament 200 expression in a rat model of complete spinal cord injury following growth-associated protein-43 treatment
8
作者 Yanping Duan Dongkui Zhang +5 位作者 Yingchun Ba Yun Yuan Jun Sun Dengli Fu Ran Zhang Jinde Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期827-831,共5页
BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofil... BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal. 展开更多
关键词 spinal cord injury growth-associated protein-43 neurofilament 200 Basso Beattie and Bresnahan locomotor rating scale
下载PDF
Effects of cyclooxygenase 2 inhibitor on growth-associated protein 43 and nerve growth factor expression in dorsal root ganglion during neuropathic pain development
9
作者 Chen Wang Zhenwei Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期749-755,共7页
BACKGROUND: Inflammatory responses in injured nerves have been recognized as important factors for initially sensitizing nociceptive neurons. Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin synthe... BACKGROUND: Inflammatory responses in injured nerves have been recognized as important factors for initially sensitizing nociceptive neurons. Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin synthesis, and COX-2 inhibitor is involved in mechanisms of analgesia and anti-inflammation. OBJECTIVE: To investigate the effects of COX-2 inhibitor on thermal and mechanical hyperalgesia, as well as expression of growth associated protein 43 (GAP-43) and nerve growth factor (NGF) in dorsal root ganglion, in a rat model of neuropathic pain due to chronic constriction injury. DESIGN, TIME AND SETTING: A randomized, controlled, comparison study that was performed at the Surgical Department and Pathological Laboratory, Second Affiliated Hospital of Shantou University Medical College from September 2006 to September 2007. MATERIALS: COX-2 inhibitor, Iornoxicam, was purchased from Nycomed Pharmaceutical (Austria); rabbit anti-GAP-43, and rabbit anti-NGF polyclonal antibodies were purchased from Boster, Wuhan, China. METHODS: A total of 50 adult, Wistar rats were randomly assigned to four groups: normal control (n = 5), model (n = 15), normal saline control (n = 15), and Iornoxicam treatment (n =15). With exception of the control group, the sciatic nerve of all rats was loosely ligated to establish a model of chronic constriction injury. The model rats were divided into three subgroups according to varying post-operative survival periods: 3, 7 and 14 days (n = 5), respectively. Rats in the Iornoxicam treatment group were intraperitoneally injected with 1.3 mg/kg lornoxicam every 12 hours throughout the entire experimental procedure. Rats in the normal saline control group were intraperitoneally injected with 1.3 mL/kg saline. MAIN OUTCOME MEASURES: Immunohistochemistry revealed expression of GAP-43 and NGF in the L5 dorsal root ganglions. Mechanical withdrawal threshold and thermal withdrawal latency were used to observe neurological behavioral changes in rats. RESULTS: The relative gray values of GAP-43- and NGF-positive neurons in the model group were remarkably increased compared with the normal control rats (P 〈 0.01), while the relative gray values in the Iomoxicam treatment group were significantly less than the model and normal saline control groups (P 〈 0.01). Mechanical withdrawal threshold and thermal withdrawal latency gradually decreased with increasing injury time in the model, normal saline control, and Iornoxicam treatment groups, and were significantly less than the normal control group (P 〈 0.05). In addition, mechanical withdrawal threshold and thermal withdrawal latency were significantly greater in the Iornoxicam treatment group compared with the model and normal saline control groups (P 〈 0.05). CONCLUSION: Intraperitoneal injection of the COX-2 inhibitor Iornoxicam attenuated mechanical and thermal hyperalgesia induced by sciatic nerve chronic constriction injury and inhibited the increased expression of GAP-43 and NGF. 展开更多
关键词 growth associated protein nerve growth factor neuropathic pain cyclooxygenase inhibitor Iomoxicam dorsal root ganglion
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:1
10
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
Major royal-jelly proteins intake modulates immune functions and gut microbiota in mice 被引量:2
11
作者 Hang Wu Shican Zhou +7 位作者 Wenjuan Ning Xiao Wu Xiaoxiao Xu Zejin Liu Wenhua Liu Kun Liu Lirong Shen Junpeng Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期444-453,共10页
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer... In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability. 展开更多
关键词 Major royal-jelly proteins Immunity ESTROGEN Gut microbiota Cytokines
下载PDF
The pathogenic mechanism of TAR DNA-binding protein 43(TDP-43)in amyotrophic lateral sclerosis 被引量:2
12
作者 Xinxin Wang Yushu Hu Renshi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期800-806,共7页
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t... The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation). 展开更多
关键词 amyotrophic lateral sclerosis axonal transport liquid-liquid phase separation noncellular autonomous functions oxidative stress PATHOGENESIS post-translational modification protein quality control system stress granules TAR DNA-binding protein 43(TDP-43)
下载PDF
Impact of apolipoprotein E isoforms on sporadic Alzheimer's disease:beyond the role of amyloid beta 被引量:3
13
作者 Madia Lozupone Francesco Panza 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期80-83,共4页
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders... The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype. 展开更多
关键词 Alzheimer's disease AMYLOID-BETA apolipoprotein E DEMENTIA glymphatic transport LIPIDS neuropsychiatric symptoms neurovascular unit tau protein
下载PDF
GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean 被引量:1
14
作者 Zhuang Li Qichao Tu +7 位作者 Xiangguang Lyu Qican Cheng Ronghuan Ji Chao Qin Jun Liu Bin Liu Hongyu Li Tao Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期432-442,共11页
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate... Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization. 展开更多
关键词 DELLA protein GmRGAs GmSTFs Plant height SOYBEAN
下载PDF
Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers 被引量:1
15
作者 Kaiwen Lei Hao Wu +4 位作者 Jerry W Spears Xi Lin Xi Wang Xue Bai Yanling Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1329-1337,共9页
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.... This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein. 展开更多
关键词 IRON yellow-feathered broiler antioxidant function intestinal morphology tight junction protein
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
16
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION ANTIOXIDANT Bitter taste
下载PDF
Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiati 被引量:2
17
作者 Pakkath Narayanan Arya Iyyappan Saranya Nagarajan Selvamurugan 《World Journal of Stem Cells》 SCIE 2024年第2期102-113,共12页
Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed th... Mesenchymal stem cells(MSCs)originate from many sources,including the bone marrow and adipose tissue,and differentiate into various cell types,such as osteoblasts and adipocytes.Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development.Osteogenesis is the process by which new bones are formed;it also aids in bone remodeling.Wnt/β-catenin and bone morphogenetic protein(BMP)signaling pathways are involved in many cellular processes and considered to be essential for life.Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body.Recent studies have indicated that these two signaling pathways contribute to osteogenic differen-tiation.Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway.Here,we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation,emphasizing the canonical pathways.This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch-and extracellular-regulated kinases in osteogenic differentiation and bone development. 展开更多
关键词 BONE Mesenchymal stem cells Osteogenic differentiation WNT/Β-CATENIN Bone morphogenetic proteins
下载PDF
Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders:current knowledge and future directions 被引量:1
18
作者 Yumei Yue Xiaodan Zhang +2 位作者 Wen Lv Hsin-Yi Lai Ting Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1973-1980,共8页
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli... Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy. 展开更多
关键词 atypical parkinsonism glymphatic system magnetic resonance imaging neurotoxic proteins Parkinson’s disease
下载PDF
Optimizing the Bacillus thuringiensis(Bt)protein concentration in cotton:Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins 被引量:1
19
作者 Zhenyu Liu Shu Dong +8 位作者 Yuting Liu Hanjia Li Fuqin Zhou Junfeng Ding Zixu Zhao Yinglong Chen Xiang Zhang Yuan Chen Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3419-3436,共18页
During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for cont... During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves. 展开更多
关键词 Gossypium hirsutum Bt cotton insecticidal protein bolls and their subtending leaves nitrogen metabolism
下载PDF
Effects of improved amino acid balance diet on lysine mammary utilization, whole body protein turnover and muscle protein breakdown on lactating sows
20
作者 Sai Zhang Juan C.Marini +4 位作者 Vengai Mavangira Andrew Claude Julie Moore Mahmoud A.Mohammad Nathalie L.Trottier 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2031-2043,共13页
Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein tur... Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown.Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets(10.80 MJ/kg net energy):control(CON;19.24%CP)and reduced CP with“optimal”AA profile(OPT;14.00%CP).Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1,14,18,and 21 of lactation.Between d 14 and 18,a subset of 9 sows(CON=4,OPT=5)was infused with a mixed solution of 3-[methyl-2H3]histidine(bolus injection)and[13C]bicarbonate(priming dose)first,then a constant 2-h[13C]bicarbonate infusion followed by a 6-h primed constant[1-13C]lysine infusion.Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment,Lys oxidation rate,whole body protein turnover,and muscle protein breakdown.Results Over the 21-d lactation period,compared to CON,sows fed OPT had greater litter growth rate(P<0.05).Compared to CON,sows fed OPT had greater efficiency of Lys(P<0.05),Lys mammary flux(P<0.01)and whole-body protein turnover efficiency(P<0.05).Compared to CON,sows fed OPT tended to have lower whole body protein breakdown rate(P=0.069).Muscle protein breakdown rate did not differ between OPT and CON(P=0.197).Conclusion Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown.These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown. 展开更多
关键词 Amino acid Efficiency Lactating sows protein breakdown protein turnover Reduced protein diet
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部