Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ...Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.展开更多
Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise ...Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.展开更多
In this study,10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tla′loc in Mexico.The strains were characterized by their capacity to produce auxins,solubilize phosphates and stimul...In this study,10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tla′loc in Mexico.The strains were characterized by their capacity to produce auxins,solubilize phosphates and stimulate mycelial growth of the ectomycorrhizal fungus Suillus sp.All isolates were identified at the molecular level.Moreover,an experiment was established to evaluate the response of Pinus pseudostrobus seedlings to inoculation with the rhizobacteria strains.The isolated strains belonged to the species Cupriavidus basilensis,Rhodococcus qingshengii,R.erythropolis,Pseudomonas spp.,P.gessardii,Stenotrophomonas rhizophila and Cohnella sp.All of the strains produced auxins;the best producer was R.erythropolis CPT9(76.4 lg mL^-1).P.gessardii CPT6 solubilized phosphate at a significant level(443 lg mL^-1).The strain S.rhizophila CPT8 significantly increased the radial growth of the ectomycorrhizal fungus Suillus sp.by 18.8%.Five strains increased the dry mass of the shoots;R.qingshengii CPT4 and R.erythropolis CPT9 increased growth the most,by more than 20%.Inoculation with plant-growth-promoting rhizobacteria can be a very useful practice in a forest nursery to produce healthy,vigorous plants.展开更多
Four rhizobacteria selected out of over 500 isolates from rhizosphere of the vegetables in China were further studied for suppression of the root-knot nematode and soil-borne fungal pathogens in laboratory and greenho...Four rhizobacteria selected out of over 500 isolates from rhizosphere of the vegetables in China were further studied for suppression of the root-knot nematode and soil-borne fungal pathogens in laboratory and greenhouse in Belgium. They were identified as Brevibacillus brevis or Bacillus subtilis by Biolog test and partial 16s rDNA sequence comparison. They not only inhibited the radial growth of the root-infecting fungi Rhizoctonia solani SX-6, Pythium aphanidermatum ZJP-1 and Fusarium oxysporum f.sp. cucumerinum ZJF-2 in vitro, but also exhibited strong nematicidal activity by killing the second stage larvae of Meloidogyne javanica to varying degrees in the greenhouse. The toxic principles of bacterium B7 that showed the highest juvenile mortality were partially characterized. The active factors were heat stability and resistance to extreme pH values. B7 used either as seed dressing or soil drench significantly reduced the nematode populations in the rhizosphere and enhanced the growth of mungbean plants over the controls in the presence or absence of R. solani.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
Salinity is one of the most important growth-limiting factors for most crops in arid and semi-arid regions;however,the use of plant growth-promoting rhizobacteria isolated from saline soils could reduce the effects of...Salinity is one of the most important growth-limiting factors for most crops in arid and semi-arid regions;however,the use of plant growth-promoting rhizobacteria isolated from saline soils could reduce the effects of saline stress in crops.This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria(PGPRs),isolated from the rhizosphere of halophile plants,for the growth,Na^+/K^+balance,ethylene emission,and gene expression of wheat seedlings{Triticum aestivum L.)grown under saline conditions(100 mmol L^-1 NaCl)for 14 d.A total of 118 isolates obtained from saline soils of the deserts of Iran were tested for their capacity as PGPRs.Out of the 118 isolates,17 could solubilize phosphate(Ca3(P〇4)2),5 could produce siderophores,and 16 could synthesize indole-3-acetic acid.Additionally,PGPRs were also evaluated for aminocyclopropane-l-carboxylate deaminase activity.A pot experiment was conducted to evaluate the ability of 28 PGPR isolates to promote growth,regulate Na^+/K^+balance,and decrease ethylene emissions in plants.The most efficient PGPRs were Arthrobacter aurescens.Bacillus atrophaeus,Enterobacter ashuriae,and Pseudomonas fluorescens.Gene expression analysis revealed the up-regulation of H^+-PPase,HKT1,NHX7,CAT,and APX expression in roots of Enterobacter-inocuVdied salt-stressed plants.Salt-tolerant rhizobacteria exhibiting plant growth-promoting traits can facilitate the growth of wheat plants under saline conditions.Our results indicate that the isolation of these bacteria may be useful for formulating new inoculants to improve wheat cropping systems in saline soils.展开更多
[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for t...[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.展开更多
[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promo...[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.展开更多
[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical...[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical basis for the development of PGPR compound fertilizers suitable for local environment.[Methods] In this study,16S rDNA gene sequence analysis was used to identify fast-growing and competitive strains from pasture nodules and rhizosphere soils in Guizhou Province,and three representative Rhizobia and phosphorus-solubilizing bacteria were chosen for the test of bacterial combination when reducing 50% of nitrogen and 30% of phosphorus.The effects of different strain combinations on the plant height,root length,aboveground and underground biomass of Lotus corniculatus L.were investigated,and the total nitrogen and total phosphorus contents of the plants were determined.[Results] The mixed bacterial agents could promote the increase of root biomass,and the effects of A1,A3,B3 and C3 were the most obvious.The fresh weight and dry weight of the roots of L.corniculatus increased by 30.35%-168.45% and 26.43%-180.00%,respectively,and A3,B3,B2 and C3 had the best effects.The total phosphorus content of the plants increased by 12.79%-55.25% compared with the CK2;and most of the bacterial agents with significant growth-promoting effects showed decreased total nitrogen contents,while those with non-significant growth-promoting effects showed significantly-increased total nitrogen contents,which were not as much as the CK1.Comprehensively,the most productive combination was C3,namely R27-2 Rhinohizobium fredii and P33-3 Stenotrophomonas rhizophila.[Conclusions] This study can provide a theoretical basis for the production and promotion of bacterial fertilizers.展开更多
Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathoge...Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.展开更多
Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecolo...Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.展开更多
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,...The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.展开更多
The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alte...The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.展开更多
Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing ...Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing countries,and from 2008 to 2018,droughts accounted for over 34%of crop and livestock yield losses,totaling about USD 37 billion.To support the growing human population,agricultural output must increase substantially,necessitating a 60%–100%rise in crop productivity to meet the escalating demand.To address environmental challenges,organic,inorganic,and microbial biostimulants are increasingly employed to enhance plant resilience through various morphological,physiological,and biochemical modifications.Plant biostimulants enhance plant resilience under abiotic stress through mechanisms such as abscisic acid signaling modulation,which regulates stomatal closure to reduce water loss during drought and heat stress.Additionally,they aid in scavenging reactive oxygen species and stabilizing ion channels,mitigating oxidative damage,and maintaining ionic balance under stress conditions such as salinity.This review summarizes recent advancements in applying these biostimulants,focusing on their roles in triggering morphological,physiological,biochemical,and molecular changes that collectively enhance plant resilience under stress conditions.It also includes a bibliometric analysis of all articles published on biostimulants from 2019 to 2024 and explores future research directions.Emphasis was placed on optimizing biostimulant formulations and understanding their synergistic effects to maximize their efficacy under various stress conditions.By integrating biostimulants into agricultural practices,we can adopt a sustainable strategy to safeguard crop productivity in the face of climate change and environmental stressors.展开更多
Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in p...Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have re-ceived more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms in-volved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.展开更多
Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have be...Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have been recorded as growth promoters in rice. This study was developed to understand the effect of the application of rhizobacteria on upland rice plants in consecutive plantations. Experiments were conducted in a completely randomized design with four replications of four treatments: rice seed inoculated with P. fluorescens BRM-32111, rice seed inoculated with B. pyrrocinia BRM-32113(both sown on soil with rice residue), non-inoculated plants sown on soil with rice residue(control with residue(WR)), and non-inoculated plants on soil with no residue(NR). Roots and seedling growth were adversely affected by allelopathic compounds in control WR plants. Plants inoculated with rhizobacteria P. fluorescens BRM-32111 or B. pyrrocinia BRM-32113 induced an increase of 88% in biomass, 3% in the leaf area, 40% in length, 67% in root biomass, 21% in chlorophyll a, 53% in chlorophyll(a+b), 50% in rate of carbon assimilation(A), 227% in A/rubisco carboxylation efficiency(Ci) and 63% in water use efficiency(WUE) compared to control WR plants. These results indicate that rhizobacteria P. fluorescens BRM-32111 and B. pyrrocinia BRM-32113 increase the tolerance of rice plants to stress from allelochemicals. There are possible practical agricultural applications of these results for mitigating the effects of environmental allelochemistry on upland rice.展开更多
The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhiz...The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhizobacteria native to Benin’s soils and to evaluate their efficacy on the growth and biomass yield of maize under greenhouse conditions on ferrallitic and ferruginous soils. Clay and peat were used as a conservation binder for the preparation of the biostimulants. These binders were used alone or combined in the different formulations with maize flour and sucrose. 10 g of biostimulants were applied at sowing in pots containing five kilograms of sterilised soil. The experimental design was a completely randomised block of 24 treatments with three replicates. The results obtained showed significant improvements (<em>P</em> < 0.001) in height (49.49%), stem diameter (32.7%), leaf area (66.10%), above-ground biomass (97.12%) and below-ground biomass (53.98%) on ferrallitic soil with the application of the clay + <em>Pseudomonas putida</em> biostimulant compared to the control. On the other hand, the use of the peat biostimulant + <em>Pseudomonas syringae</em> was more beneficial for plant growth on ferruginous soil. The height, stem diameter, leaf area, above-ground biomass and below-ground biomass of the plants under the influence of this biostimulant were improved by 83.06%, 44.57%, 102.94%, 86.84% and 42.68%, respectively, compared to the control. Therefore, these results confirm that Rhizobacteria express their potential through biostimulants formulated on maize. The formulated biostimulants can later be used by producers to improve crop productivity for sustainable agriculture.展开更多
Azospirillum brasilense and Pseudomonas fluorescens are well-known plant growth promoting rhizobacteria.However,the effects of A.brasilense and P.fluorescens on the N cycles in the paddy field and rice plant growth ar...Azospirillum brasilense and Pseudomonas fluorescens are well-known plant growth promoting rhizobacteria.However,the effects of A.brasilense and P.fluorescens on the N cycles in the paddy field and rice plant growth are little known.This study investigated whether and how A.brasilense and P.fluorescens contribute to the N transformations and N supply capacities in the rhizosphere,and clarified the effects of A.brasilense and P.fluorescens on the N application rate in rice cultivation.Inoculations with A.brasilense and P.fluorescens coupled with N application rate trials were conducted in the paddy field in 2016 and 2017.The inoculations of rice seedlings included four treatments:sterile saline solution(M_(0)),A.brasilense(M_(b)),P.fluorescens(M_(p)),and co-inoculation with a mixture of A.brasilense and P.fluorescens(M_(bp)).The N application rate included four levels:0 kg N ha^(–1)(N_(0)),90 kg N ha^(–1)(N_(90)),180 kg N ha^(–1)(N_(180)),and 270 kg N ha^(–1)(N_(270)).The results indicated that the M_(bp) and M_(p) treatments significantly enhanced the ammonification activities in the rhizosphere compared with the M_(0) treatment,especially for higher N applications,while the Mbp and M_(b) treatments greatly enhanced the nitrogenase activities in the rhizosphere compared with the M_(0) treatments,especially for lower N applications.Azospirillum brasilense and P.fluorescens did not participate in the nitrification processes or the denitrification processes in the soil.The soil respiration rate and microbial biomass N were greatly affected by the interactions between the rhizobacteria inoculations and the N fertilizer applications.In the M_(bp) treatment,N supply capacities and rice grain yields showed no significant differences among the N_(90),N_(180),and N_(270) applications.The N application rate in the study region can be reduced to 90 kg N ha^(–1) for rice seedlings co-inoculated with a mixture of A.brasilense and P.fluorescens.展开更多
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
基金the National Key Research and Development Program of China(No.2017YFE0119100)the National Natural Science Foundation of China(No.42107513)the Key Research and Development Program of Gansu(No.21YF5FA151)。
文摘Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.
基金supported by SEP,Grant DSA/103.5/15/10976 and VIEP-BUAP,Grant 20 Sub-Program。
文摘Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.
基金supported by the project ‘‘Impact of Climatic Change and Agricultural Activity on the Emission of Greenhouse Gases and on the Microbial Resources of the Sierra Nevada,Mexico’’[‘‘Impacto del Cambio Climáticos y actividad agrícola en la emisión de gases de efecto invernadero y en los recursos microbianos de la Sierra Nevada,México’’] No.213059funded by the National Council of Science and Technology [Consejo Nacional de Ciencia y Tecnología(CONACy T)]
文摘In this study,10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tla′loc in Mexico.The strains were characterized by their capacity to produce auxins,solubilize phosphates and stimulate mycelial growth of the ectomycorrhizal fungus Suillus sp.All isolates were identified at the molecular level.Moreover,an experiment was established to evaluate the response of Pinus pseudostrobus seedlings to inoculation with the rhizobacteria strains.The isolated strains belonged to the species Cupriavidus basilensis,Rhodococcus qingshengii,R.erythropolis,Pseudomonas spp.,P.gessardii,Stenotrophomonas rhizophila and Cohnella sp.All of the strains produced auxins;the best producer was R.erythropolis CPT9(76.4 lg mL^-1).P.gessardii CPT6 solubilized phosphate at a significant level(443 lg mL^-1).The strain S.rhizophila CPT8 significantly increased the radial growth of the ectomycorrhizal fungus Suillus sp.by 18.8%.Five strains increased the dry mass of the shoots;R.qingshengii CPT4 and R.erythropolis CPT9 increased growth the most,by more than 20%.Inoculation with plant-growth-promoting rhizobacteria can be a very useful practice in a forest nursery to produce healthy,vigorous plants.
基金Project supported by the Flemish Governments of Belgium
文摘Four rhizobacteria selected out of over 500 isolates from rhizosphere of the vegetables in China were further studied for suppression of the root-knot nematode and soil-borne fungal pathogens in laboratory and greenhouse in Belgium. They were identified as Brevibacillus brevis or Bacillus subtilis by Biolog test and partial 16s rDNA sequence comparison. They not only inhibited the radial growth of the root-infecting fungi Rhizoctonia solani SX-6, Pythium aphanidermatum ZJP-1 and Fusarium oxysporum f.sp. cucumerinum ZJF-2 in vitro, but also exhibited strong nematicidal activity by killing the second stage larvae of Meloidogyne javanica to varying degrees in the greenhouse. The toxic principles of bacterium B7 that showed the highest juvenile mortality were partially characterized. The active factors were heat stability and resistance to extreme pH values. B7 used either as seed dressing or soil drench significantly reduced the nematode populations in the rhizosphere and enhanced the growth of mungbean plants over the controls in the presence or absence of R. solani.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金This work was supported scientifically by COST Action ESI406“Soil fauna-Key to Soil Organic Matter Dynamics and Modelling(KEYSOM)”.
文摘Salinity is one of the most important growth-limiting factors for most crops in arid and semi-arid regions;however,the use of plant growth-promoting rhizobacteria isolated from saline soils could reduce the effects of saline stress in crops.This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria(PGPRs),isolated from the rhizosphere of halophile plants,for the growth,Na^+/K^+balance,ethylene emission,and gene expression of wheat seedlings{Triticum aestivum L.)grown under saline conditions(100 mmol L^-1 NaCl)for 14 d.A total of 118 isolates obtained from saline soils of the deserts of Iran were tested for their capacity as PGPRs.Out of the 118 isolates,17 could solubilize phosphate(Ca3(P〇4)2),5 could produce siderophores,and 16 could synthesize indole-3-acetic acid.Additionally,PGPRs were also evaluated for aminocyclopropane-l-carboxylate deaminase activity.A pot experiment was conducted to evaluate the ability of 28 PGPR isolates to promote growth,regulate Na^+/K^+balance,and decrease ethylene emissions in plants.The most efficient PGPRs were Arthrobacter aurescens.Bacillus atrophaeus,Enterobacter ashuriae,and Pseudomonas fluorescens.Gene expression analysis revealed the up-regulation of H^+-PPase,HKT1,NHX7,CAT,and APX expression in roots of Enterobacter-inocuVdied salt-stressed plants.Salt-tolerant rhizobacteria exhibiting plant growth-promoting traits can facilitate the growth of wheat plants under saline conditions.Our results indicate that the isolation of these bacteria may be useful for formulating new inoculants to improve wheat cropping systems in saline soils.
基金Supported by the Science Foundation for the Introduced High-level Talents in Anhui Agricultural University(yj2008-1)~~
文摘[Objective] The study aimed to investigate the growth-promoting activities of endophytic bacteria from tomato plants.[Method]The endophytic bacteria isolated from different tissues of tomato plants were analyzed for the effects of their growth-promoting activities on the germination and growth of tomato plants.The bacteria with growth-promoting activity were preliminarily identified.[Result]Totally 59 endophytic bacterial strains were isolated from roots and stems of tomatoes,of which 4 showed significantly growth-promoting activity to germination and growth of tomato.The results suggest that these strains are endowed with the potential capability of growth-promoting.[Conclusion]The endophytic bacteria with growth-promoting activity were found among the isolates from tomato plants.This provided a good foundation for utilization of these bacteria with growth-promoting activity.
基金Supported by Natural Science Foundation of Chongqing City(CSTC,2009BB1294)~~
文摘[ Objective ] The paper was to study the growth-promoting and antagonistic action of endophytic bacteria strains Itb57 and Itb295 of tobacco to explore their functions in biological control. [ Method] The growth-promoting effects of bacterial suspension ~ff endophytic bacteria Itb57 and Itb295 on tobacco seedling un- der different treatment modes were studied using potting method in greenhouse. The antagonistic action of bacterial suspension of endophytic bacteria Itb57 and Itb295 on Phytophthora nicotianae, Alternaria alternata and Botrytis cinerea were measured by duel culture method. [ Result] Bacterial suspensions of enduphytic bacteria Itb57 and Itb295 had certain growth-promoting effects on tobacco seedling, which could significantly increase the fresh weight and dry weight in aerial part; the growth-promoting effect of soaking + spraying and irrigating treatment was the best. Itb57 strain had good antagonistic action against P. nicotianae. A. alterna- ta and B. cinerea, while Itb295 strain only had good antifungal effect against P. nicotianae. [ Conclusion] The results provided basis for the study and application of tobacco endophytic bacteria strains Itb57 and Itb295 in biocontrol of tobacco diseases.
基金Supported by Guizhou Province Science and Technology Support Program(QKHZC[2016]2504,[2019]2359)
文摘[Objectives] This study was conducted to explore the interaction between nitrogen-fixing and phosphate-solubilizing strains and the optimal combination of different functional strains,in order to provide a theoretical basis for the development of PGPR compound fertilizers suitable for local environment.[Methods] In this study,16S rDNA gene sequence analysis was used to identify fast-growing and competitive strains from pasture nodules and rhizosphere soils in Guizhou Province,and three representative Rhizobia and phosphorus-solubilizing bacteria were chosen for the test of bacterial combination when reducing 50% of nitrogen and 30% of phosphorus.The effects of different strain combinations on the plant height,root length,aboveground and underground biomass of Lotus corniculatus L.were investigated,and the total nitrogen and total phosphorus contents of the plants were determined.[Results] The mixed bacterial agents could promote the increase of root biomass,and the effects of A1,A3,B3 and C3 were the most obvious.The fresh weight and dry weight of the roots of L.corniculatus increased by 30.35%-168.45% and 26.43%-180.00%,respectively,and A3,B3,B2 and C3 had the best effects.The total phosphorus content of the plants increased by 12.79%-55.25% compared with the CK2;and most of the bacterial agents with significant growth-promoting effects showed decreased total nitrogen contents,while those with non-significant growth-promoting effects showed significantly-increased total nitrogen contents,which were not as much as the CK1.Comprehensively,the most productive combination was C3,namely R27-2 Rhinohizobium fredii and P33-3 Stenotrophomonas rhizophila.[Conclusions] This study can provide a theoretical basis for the production and promotion of bacterial fertilizers.
基金financially supported by the Third Xinjiang Comprehensive Scientific Expedition (2022xjkk020605)the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) (2020E01047)supported by the Introduction Project of High-level Talents in Xinjiang Uygur Autonomous Region, China
文摘Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.
基金Supported by Hebei Provincial Key R&D projects(21327306D)Hebei Provincial Key R&D projects(20326807D)Chengde Science and Technology Research and Development Planning Project(202103B003).
文摘Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.
基金Supported by the Science and Technology Project of Nanping Tobacco Company(201203)~~
文摘The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.
文摘The use of agrochemical products to combat diseases in crops has adverse effects on the environment and human health. Plant growth promoting rhizobacterium (PGPR) has been increasingly proposed as an eco-friendly alternative in agriculture. PGPRs have beneficial effects not only in promoting plant growth but also have shown their potential as biological control agent, being able to inhibit plant pathogens. Here, we investigated the use of PGPR <em>Paraburkholderia</em> sp. strain SOS3 to provide disease protection in rice (<em>Oryza sativa</em> L.). The antagonistic activity of SOS3 against five fungal pathogens of rice was assessed by dual culture on plates and on rice seedlings. The results showed that on plate assay, SOS3 inhibits the growth of <em>Curvularia lunata</em>, <em>Rhizoctonia solani</em>, <em>Pyricularia oryzae</em>, <em>Helminthosporium oryzae</em>, and <em>Fusarium moniliforme</em> by 17.2%, 1.1%, 8.3%, 32.5%, and 35.4%, respectively. When inoculated on rice seeds, SOS3 promotes seed germination and significantly reduces disease symptoms in plants infected with <em>R. solani</em>. These results suggest that SOS3 has a great potential to be used in rice agriculture to combat the “Sheath Blight” disease.
文摘Abiotic stresses such as drought,heat,salinity,and heavy metal contamination severely affect global agricultural productivity.Between 2005 and 2015,droughts caused losses of approximately USD 29 billion in developing countries,and from 2008 to 2018,droughts accounted for over 34%of crop and livestock yield losses,totaling about USD 37 billion.To support the growing human population,agricultural output must increase substantially,necessitating a 60%–100%rise in crop productivity to meet the escalating demand.To address environmental challenges,organic,inorganic,and microbial biostimulants are increasingly employed to enhance plant resilience through various morphological,physiological,and biochemical modifications.Plant biostimulants enhance plant resilience under abiotic stress through mechanisms such as abscisic acid signaling modulation,which regulates stomatal closure to reduce water loss during drought and heat stress.Additionally,they aid in scavenging reactive oxygen species and stabilizing ion channels,mitigating oxidative damage,and maintaining ionic balance under stress conditions such as salinity.This review summarizes recent advancements in applying these biostimulants,focusing on their roles in triggering morphological,physiological,biochemical,and molecular changes that collectively enhance plant resilience under stress conditions.It also includes a bibliometric analysis of all articles published on biostimulants from 2019 to 2024 and explores future research directions.Emphasis was placed on optimizing biostimulant formulations and understanding their synergistic effects to maximize their efficacy under various stress conditions.By integrating biostimulants into agricultural practices,we can adopt a sustainable strategy to safeguard crop productivity in the face of climate change and environmental stressors.
基金Project supported by the National Natural Science Foundation of China (No. 20577044)the National Basic Research Program (973) of China (No. 2002CB410804)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0536), China
文摘Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have re-ceived more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms in-volved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.
基金the National Council for Scientific and Technological Development,Brazilthe Amazon Research Foundation+3 种基金Brazil,and the Rural Federal University of AmazonBrazil for the research fundingthe Brazilian Federal Agency for the SupportEvaluation of Graduate Education for the grant of a doctorate scholarship
文摘Allelopathic compounds reduce the growth and productivity of upland rice plants, especially in consecutive plantations. The rhizobacteria Pseudomonas fluorescens BRM-32111 and Burkholderia pyrrocinia BRM-32113 have been recorded as growth promoters in rice. This study was developed to understand the effect of the application of rhizobacteria on upland rice plants in consecutive plantations. Experiments were conducted in a completely randomized design with four replications of four treatments: rice seed inoculated with P. fluorescens BRM-32111, rice seed inoculated with B. pyrrocinia BRM-32113(both sown on soil with rice residue), non-inoculated plants sown on soil with rice residue(control with residue(WR)), and non-inoculated plants on soil with no residue(NR). Roots and seedling growth were adversely affected by allelopathic compounds in control WR plants. Plants inoculated with rhizobacteria P. fluorescens BRM-32111 or B. pyrrocinia BRM-32113 induced an increase of 88% in biomass, 3% in the leaf area, 40% in length, 67% in root biomass, 21% in chlorophyll a, 53% in chlorophyll(a+b), 50% in rate of carbon assimilation(A), 227% in A/rubisco carboxylation efficiency(Ci) and 63% in water use efficiency(WUE) compared to control WR plants. These results indicate that rhizobacteria P. fluorescens BRM-32111 and B. pyrrocinia BRM-32113 increase the tolerance of rice plants to stress from allelochemicals. There are possible practical agricultural applications of these results for mitigating the effects of environmental allelochemistry on upland rice.
文摘The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhizobacteria native to Benin’s soils and to evaluate their efficacy on the growth and biomass yield of maize under greenhouse conditions on ferrallitic and ferruginous soils. Clay and peat were used as a conservation binder for the preparation of the biostimulants. These binders were used alone or combined in the different formulations with maize flour and sucrose. 10 g of biostimulants were applied at sowing in pots containing five kilograms of sterilised soil. The experimental design was a completely randomised block of 24 treatments with three replicates. The results obtained showed significant improvements (<em>P</em> < 0.001) in height (49.49%), stem diameter (32.7%), leaf area (66.10%), above-ground biomass (97.12%) and below-ground biomass (53.98%) on ferrallitic soil with the application of the clay + <em>Pseudomonas putida</em> biostimulant compared to the control. On the other hand, the use of the peat biostimulant + <em>Pseudomonas syringae</em> was more beneficial for plant growth on ferruginous soil. The height, stem diameter, leaf area, above-ground biomass and below-ground biomass of the plants under the influence of this biostimulant were improved by 83.06%, 44.57%, 102.94%, 86.84% and 42.68%, respectively, compared to the control. Therefore, these results confirm that Rhizobacteria express their potential through biostimulants formulated on maize. The formulated biostimulants can later be used by producers to improve crop productivity for sustainable agriculture.
基金This study was financially supported by the National Key Research and Development Program of China(2016YFD0200801,2016YFD0200805)the National Natural Science Foundation of China(31872857)+1 种基金the Foundation of State Key Laboratory of Rice Biology,China National Rice Research Institute(2017ZZKT10404)the Zhejiang Provincial Natural Science Foundation of China(LY16C130007).
文摘Azospirillum brasilense and Pseudomonas fluorescens are well-known plant growth promoting rhizobacteria.However,the effects of A.brasilense and P.fluorescens on the N cycles in the paddy field and rice plant growth are little known.This study investigated whether and how A.brasilense and P.fluorescens contribute to the N transformations and N supply capacities in the rhizosphere,and clarified the effects of A.brasilense and P.fluorescens on the N application rate in rice cultivation.Inoculations with A.brasilense and P.fluorescens coupled with N application rate trials were conducted in the paddy field in 2016 and 2017.The inoculations of rice seedlings included four treatments:sterile saline solution(M_(0)),A.brasilense(M_(b)),P.fluorescens(M_(p)),and co-inoculation with a mixture of A.brasilense and P.fluorescens(M_(bp)).The N application rate included four levels:0 kg N ha^(–1)(N_(0)),90 kg N ha^(–1)(N_(90)),180 kg N ha^(–1)(N_(180)),and 270 kg N ha^(–1)(N_(270)).The results indicated that the M_(bp) and M_(p) treatments significantly enhanced the ammonification activities in the rhizosphere compared with the M_(0) treatment,especially for higher N applications,while the Mbp and M_(b) treatments greatly enhanced the nitrogenase activities in the rhizosphere compared with the M_(0) treatments,especially for lower N applications.Azospirillum brasilense and P.fluorescens did not participate in the nitrification processes or the denitrification processes in the soil.The soil respiration rate and microbial biomass N were greatly affected by the interactions between the rhizobacteria inoculations and the N fertilizer applications.In the M_(bp) treatment,N supply capacities and rice grain yields showed no significant differences among the N_(90),N_(180),and N_(270) applications.The N application rate in the study region can be reduced to 90 kg N ha^(–1) for rice seedlings co-inoculated with a mixture of A.brasilense and P.fluorescens.