AIM To investigate the potential effect of inhibitors of phosphodiesterase-5(PDE-5) for therapy of portal hypertension in liver cirrhosis.METHODS In the rat model of thioacetamide-induced liver fibrosis/cirrhosis the ...AIM To investigate the potential effect of inhibitors of phosphodiesterase-5(PDE-5) for therapy of portal hypertension in liver cirrhosis.METHODS In the rat model of thioacetamide-induced liver fibrosis/cirrhosis the nitric oxide-cyclic guanosine monophosphate(NO-cGMP) pathway was investigated. Expression and localization of PDE-5, the enzyme that converts vasodilating cGMP into inactive 5'-GMP, was in the focus of the study. Hepatic gene expression of key components of the NO-cGMP pathway was determined by qRT-PCR: Endothelial NO synthase(eNOS), inducible NO synthase(iNOS), soluble guanylate cyclase subunits α1 and β1(sGCa1, sGCb1), and PDE-5. Hepatic PDE-5 protein expression and localization were detected by immunohistochemistry. Serum cGMP concentrations were measured using ELISA. Acute effects of the PDE-5 inhibitor Sildenafil(0.1 mg/kg or 1.0 mg/kg) on portal and systemic hemodynamics were investigated using pressure transducers.RESULTS Hepatic gene expression of eNOS(2.2-fold; P = 0.003), sGCa1(1.7-fold; P = 0.003), sGCb1(3.0-fold; P = 0.003), and PDE-5(11-fold; P = 0.003) was increased in cirrhotic livers compared to healthy livers. Overexpression of PDE-5(7.7-fold; P = 0.006) was less pronounced in fibrotic livers. iNOS expression was only detected in fibrotic and cirrhotic livers. In healthy liver, PDE-5 protein was localized primarily in zone 3 hepatocytes and to a lesser extent in perisinusoidal cells. This zonation was disturbed in cirrhosis: PDE-5 protein expression in perisinusoidal cells was induced approximately 8-fold. In addition, PDE-5-expressing cells were also found in fibrous septa. Serum cGMP concentrations were reduced in rats with cirrhotic livers by approximately 40%. Inhibition of PDE-5 by Sildenafil caused a significant increase in serum cGMP concentrations [+ 64% in healthy rats(P = 0.024), + 85% in cirrhotic rats(P = 0.018)]. Concomitantly, the portal venous pressure was reduced by 19% in rats with liver cirrhosis. CONCLUSION Overexpression and abrogated zonation of PDE-5 likely contribute to the pathogenesis of cirrhotic portal hypertension. PDE-5 inhibition may therefore be a reasonable therapeutic approach for portal hypertension.展开更多
Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was app...Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.展开更多
Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the th...Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.展开更多
BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism o...BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in the P2R-mediated calcium signaling pathway in nociceptive trigemJnal ganglion neurons. DESIGN, TIME AND SETTING: In vitro experiments were conducted at the Patch-Clamp Laboratory of Comprehensive Experiment Center of Anhui Medical University, China from September 2008 to June 2009. MATERIALS: Thapsigargin, caffeine, suramin, and adenosine 5'-triphosphate were purchased from Sigma, USA. METHODS: Using Fura-2-based microfluorimetry, intracellular calcium concentration ([Ca^2+]i) was measured in freshly isolated adult rat small trigeminal ganglion neurons before and after drug application. MAIN OUTCOME MEASURES: Fluorescent intensities were expressed as the ratio F340/F380 to observe [Ca^2+]i changes. RESULTS: In normal extracellular solution and Ca^2+-free solution, application of thapsigargin (1 μmol/L), a sarcoplasmic reticulum Ca^2+ pump adenosine 5'-triphosphate inhibitor, as well as caffeine (20 mmol/L), a ryanodine receptor agonist, triggered [Ca^2+]i increase in small trigeminal ganglion neurons. A similar response was induced by application of adenosine 5'-triphosphate (100 μmol/L). In Ca^2+-free conditions, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were inhibited in cells pre-treated with thapsigargin (P 〈 0.01), but not by caffeine (P 〉 0.05). In normal, extracellular solution, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were partly inhibited in cells pre-treated with thapsigargin (P 〈 0.05). CONCLUSION: Inositol-1,4, 5-triphosphate (IP3)- and ryanodine-sensitive Ca^2+ stores exist in rat nociceptive trigeminal ganglion neurons. Two pathways are involved in the purinoreceptor-mediated [Ca^2+]i rise observed in nociceptive trigeminal ganglion neurons. One pathway involves the metabotropic P2Y receptors, which are associated with the IP3 sensitive Ca^2+store, and the second pathway is coupled to ionotropic P2X receptors that induce the Ca^2+ influx.展开更多
An efficient and novel method for synthesizing 3′,5′-dithio-2′-deoxyguanosine was described.In this method normal guanosine was used as the starting material.A very efficient procedure was used to synthesize 2-O-to...An efficient and novel method for synthesizing 3′,5′-dithio-2′-deoxyguanosine was described.In this method normal guanosine was used as the starting material.A very efficient procedure was used to synthesize 2-O-tosylguanosine 1,which used 0.1 eq.DBTO instead of 2 eq.1 was treated with LTBH to give 9-(2-deoxy-β-D-threo-pentofuranosyl)guanine 2.2 could be easily turned to the target compound.展开更多
An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence prop...An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.展开更多
To confirm the existence of heme oxygenase (HO)-carbon monoxide (CO)- cyclic guanosine monophosphate (cGMP) pathway in the cultured human trabecular meshwork cells (HTMCs) in vitro, and to evaluate the inductive role...To confirm the existence of heme oxygenase (HO)-carbon monoxide (CO)- cyclic guanosine monophosphate (cGMP) pathway in the cultured human trabecular meshwork cells (HTMCs) in vitro, and to evaluate the inductive role of hemin on this pathway, HTMCs of the third to fourth generation were cultured in vitro. Reverse transcripase-polymerase chain reaction (RT-PCR) was employed for detection of HO-1 and HO-2 mRNA. Immunohistochemical staining was used to detect HO-1 and HO-2 proteins. Hemin was added into the culture solution. The HO-1 mRNA levels were quantified by RT-PCR. The relative amount of carbon monoxide released into the media was measured with the quantifying carbon monoxide hemoglobin (HbCO) by spectrophotometry. Radioimmunoassay was used to determine changes of cGMP in HTMCs. The results showed that cultured cells had the specific characteristics of HTMCs. Both HO-1 and HO-2 genes were expressed in HTMCs, as well as HO-1 and HO-2 proteins in HTMCs. Hemin induced HO-1 mRNA, HbCO and cGMP in a dose-dependent manner. In conclusion, HO-CO-cGMP pathway exists in the cultured HTMCs and can be induced by hemin. Pharmacological stimulation of HO-CO-cGMP pathway may constitute a novel therapeutic approach to rescuing glaucoma.展开更多
文摘AIM To investigate the potential effect of inhibitors of phosphodiesterase-5(PDE-5) for therapy of portal hypertension in liver cirrhosis.METHODS In the rat model of thioacetamide-induced liver fibrosis/cirrhosis the nitric oxide-cyclic guanosine monophosphate(NO-cGMP) pathway was investigated. Expression and localization of PDE-5, the enzyme that converts vasodilating cGMP into inactive 5'-GMP, was in the focus of the study. Hepatic gene expression of key components of the NO-cGMP pathway was determined by qRT-PCR: Endothelial NO synthase(eNOS), inducible NO synthase(iNOS), soluble guanylate cyclase subunits α1 and β1(sGCa1, sGCb1), and PDE-5. Hepatic PDE-5 protein expression and localization were detected by immunohistochemistry. Serum cGMP concentrations were measured using ELISA. Acute effects of the PDE-5 inhibitor Sildenafil(0.1 mg/kg or 1.0 mg/kg) on portal and systemic hemodynamics were investigated using pressure transducers.RESULTS Hepatic gene expression of eNOS(2.2-fold; P = 0.003), sGCa1(1.7-fold; P = 0.003), sGCb1(3.0-fold; P = 0.003), and PDE-5(11-fold; P = 0.003) was increased in cirrhotic livers compared to healthy livers. Overexpression of PDE-5(7.7-fold; P = 0.006) was less pronounced in fibrotic livers. iNOS expression was only detected in fibrotic and cirrhotic livers. In healthy liver, PDE-5 protein was localized primarily in zone 3 hepatocytes and to a lesser extent in perisinusoidal cells. This zonation was disturbed in cirrhosis: PDE-5 protein expression in perisinusoidal cells was induced approximately 8-fold. In addition, PDE-5-expressing cells were also found in fibrous septa. Serum cGMP concentrations were reduced in rats with cirrhotic livers by approximately 40%. Inhibition of PDE-5 by Sildenafil caused a significant increase in serum cGMP concentrations [+ 64% in healthy rats(P = 0.024), + 85% in cirrhotic rats(P = 0.018)]. Concomitantly, the portal venous pressure was reduced by 19% in rats with liver cirrhosis. CONCLUSION Overexpression and abrogated zonation of PDE-5 likely contribute to the pathogenesis of cirrhotic portal hypertension. PDE-5 inhibition may therefore be a reasonable therapeutic approach for portal hypertension.
文摘Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R28)the National Basic Research Program of China(2013CB733602)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(21390204)the National Natural Science Foundation of China(21636003,21506090)Open Fund by Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals(JSBGFC14005)Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.
基金the National Natural Science Foundation of China, No.30670694 the Natural Science Foundation of Anhui Province Department of Education in China, No.2006KJ361B+2 种基金 the National Science Fund for Distinguished Young Scholars of Anhui Medical University, No.GJJQ-0801 the Scientific Research Foundation for Doctor of Anhui Medical University, No. XJ2005006the Special Foundation for Young Scientists in Higher Education Institutions of Anhui Province, No.2010SQRL078
文摘BACKGROUND: Most of the currently available information on purinergic receptors (P2Rs) involved in pain transmission is based on results obtained in dorsal root ganglion or the spinal cord. However, the mechanism of P2Rs in trigeminal neuralgia remains unclear. OBJECTIVE: To investigate changes in the P2R-mediated calcium signaling pathway in nociceptive trigemJnal ganglion neurons. DESIGN, TIME AND SETTING: In vitro experiments were conducted at the Patch-Clamp Laboratory of Comprehensive Experiment Center of Anhui Medical University, China from September 2008 to June 2009. MATERIALS: Thapsigargin, caffeine, suramin, and adenosine 5'-triphosphate were purchased from Sigma, USA. METHODS: Using Fura-2-based microfluorimetry, intracellular calcium concentration ([Ca^2+]i) was measured in freshly isolated adult rat small trigeminal ganglion neurons before and after drug application. MAIN OUTCOME MEASURES: Fluorescent intensities were expressed as the ratio F340/F380 to observe [Ca^2+]i changes. RESULTS: In normal extracellular solution and Ca^2+-free solution, application of thapsigargin (1 μmol/L), a sarcoplasmic reticulum Ca^2+ pump adenosine 5'-triphosphate inhibitor, as well as caffeine (20 mmol/L), a ryanodine receptor agonist, triggered [Ca^2+]i increase in small trigeminal ganglion neurons. A similar response was induced by application of adenosine 5'-triphosphate (100 μmol/L). In Ca^2+-free conditions, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were inhibited in cells pre-treated with thapsigargin (P 〈 0.01), but not by caffeine (P 〉 0.05). In normal, extracellular solution, adenosine 5'-triphosphate-induced [Ca^2+]i transients in small trigeminal ganglion neurons were partly inhibited in cells pre-treated with thapsigargin (P 〈 0.05). CONCLUSION: Inositol-1,4, 5-triphosphate (IP3)- and ryanodine-sensitive Ca^2+ stores exist in rat nociceptive trigeminal ganglion neurons. Two pathways are involved in the purinoreceptor-mediated [Ca^2+]i rise observed in nociceptive trigeminal ganglion neurons. One pathway involves the metabotropic P2Y receptors, which are associated with the IP3 sensitive Ca^2+store, and the second pathway is coupled to ionotropic P2X receptors that induce the Ca^2+ influx.
基金supported by the National Natural Science Foundation of China(No.20872078)the Basic Science Research Foundation of Tsinghua University(No.JC 2001046)
文摘An efficient and novel method for synthesizing 3′,5′-dithio-2′-deoxyguanosine was described.In this method normal guanosine was used as the starting material.A very efficient procedure was used to synthesize 2-O-tosylguanosine 1,which used 0.1 eq.DBTO instead of 2 eq.1 was treated with LTBH to give 9-(2-deoxy-β-D-threo-pentofuranosyl)guanine 2.2 could be easily turned to the target compound.
文摘An adenine nucleotide derivative 2-aminoadenosine 5'-triphosphate was chemically synthesized through four steps and was characterized with 1H NMR, 31p NMR, 13C NMR, EA and FT-IR. Its ultraviolet and fluorescence properties at various pH values were studied. Two pKa values for the compound were determined by the curves of UV absorption dependency on pH, Which were 0.68 and 4.83, respectively. The values were consistent with those calculated from ACD/Labs software. In addition, hydrolysis of the adenine nucleotide derivative in the catalysis of potato apyrase was studied. The competition of the ATP analogue with ATP for potato apyrase' active site was proved to be a sequential reaction mechanism.
文摘To confirm the existence of heme oxygenase (HO)-carbon monoxide (CO)- cyclic guanosine monophosphate (cGMP) pathway in the cultured human trabecular meshwork cells (HTMCs) in vitro, and to evaluate the inductive role of hemin on this pathway, HTMCs of the third to fourth generation were cultured in vitro. Reverse transcripase-polymerase chain reaction (RT-PCR) was employed for detection of HO-1 and HO-2 mRNA. Immunohistochemical staining was used to detect HO-1 and HO-2 proteins. Hemin was added into the culture solution. The HO-1 mRNA levels were quantified by RT-PCR. The relative amount of carbon monoxide released into the media was measured with the quantifying carbon monoxide hemoglobin (HbCO) by spectrophotometry. Radioimmunoassay was used to determine changes of cGMP in HTMCs. The results showed that cultured cells had the specific characteristics of HTMCs. Both HO-1 and HO-2 genes were expressed in HTMCs, as well as HO-1 and HO-2 proteins in HTMCs. Hemin induced HO-1 mRNA, HbCO and cGMP in a dose-dependent manner. In conclusion, HO-CO-cGMP pathway exists in the cultured HTMCs and can be induced by hemin. Pharmacological stimulation of HO-CO-cGMP pathway may constitute a novel therapeutic approach to rescuing glaucoma.