期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation research on the influence of eroded primary key strata on dynamic strata pressure of shallow coal seams in gully terrain 被引量:13
1
作者 Zhang Zhiqiang Xu Jialin +1 位作者 Zhu Weibing Shan Zhenjun 《International Journal of Mining Science and Technology》 2012年第1期51-55,共5页
In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental me... In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine. 展开更多
关键词 strata (KS) Being eroded gully terrain Shallow coal seam Dynamic strata pressure
下载PDF
Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining 被引量:7
2
作者 Li Jianwei Liu Changyou Zhao Tong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期255-260,共6页
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based... This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully. 展开更多
关键词 gully terrain Shallow seam Stress field Slope motion Ground pressure behavior
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部