重金属汞污染是危害粮食安全的重要问题,直接进样测汞法的检测过程中需要对检测结果做好质量控制。检测结果需要识别实验过程中各环节对结果的影响大小。基于GB/T 27404—2008《实验室质量控制规范食品理化检测》附录F中对实验室开展新...重金属汞污染是危害粮食安全的重要问题,直接进样测汞法的检测过程中需要对检测结果做好质量控制。检测结果需要识别实验过程中各环节对结果的影响大小。基于GB/T 27404—2008《实验室质量控制规范食品理化检测》附录F中对实验室开展新项目所需验证的各种项目:回收率、标准曲线、测定低限、精密度、准确度等。使用自适应蒙特卡洛法(adaptive Monte Carlo method,MCM)和测量不确定度表示指南方法(Guide to the expression of uncertainty in measurement,GUM)分别对直接进样测汞法开展不确定度评定。GUM法得到的不确定范围为(0.0193±0.0017)mg/kg(k=2);MCM法得到的不确定度置信区间(95%)为[0.0177,0.0211];使用MCM Alchimia软件对2种方法的不确定度概率密度拟合曲线,MCM法与GUM法评价结果一致性较好。分析不确定度评定过程中各不确定度贡献率,回收率和标准曲线拟合过程引入不确定度在检出限处引入的不确定度分量较大,建议在方法验证和不确定度评定中使用定量限作为加标回收率和标准曲线最小浓度点。展开更多
As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-hel...As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.展开更多
Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of ph...Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of phenolic compounds, such as flavonoids, terpenoids and eugenol. In turn, the most common uses of gum arabic are in the form of powder for addition to soft drink syrups, cuisine and baked goods, specifically to stabilize the texture of products, increase the viscosity of liquids and promote the leavening of baked products (e.g., cakes). Both eugenol, extracted from cloves, and gum arabic, extracted from the hardened sap of two species of the Acacia tree, are dietary constituents routinely consumed virtually throughout the world. Both of them are also widely used medicinally to inhibit oxidative stress and genotoxicity. The prevention arm of the study included groups: Ia, IIa, IIIa, Iva, V, VI, VII, VIII. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA, EUG, or 10% GA + EUG by gavage. The treatment arm of the study included groups Ib, IIb, IIIb e IVb, IX, X, XI, XII). Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. The novelty of this study is the investigation of their use alone and together for the prevention and treatment of experimental colorectal carcinogenesis induced by dimethylhydrazine. Our results show that the combined use of 10% gum arabic and eugenol was effective, with antioxidant action in the colon, as well as reducing oxidative stress in all colon segments and preventing and treating genotoxicity in all colon segments. Furthermore, their joint administration reduced the number of aberrant crypts and the number of aberrant crypt foci (ACF) in the distal segment and entire colon, as well as the number of ACF with at least 5 crypts in the entire colon. Thus, our results also demonstrate the synergistic effects of 10% gum arabic together with eugenol (from cloves), with antioxidant, antigenotoxic and anticarcinogenic actions (prevention and treatment) at the doses and durations studied, in the colon of rats submitted to colorectal carcinogenesis induced by dimethylhydrazine.展开更多
The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation...The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.展开更多
Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to incre...Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to increasing consumer awareness, thus contributing to the rising demand for natural hydrocolloids. Gum Arabic from Acacia senegal var. kerensis is a natural gum exhibiting excellent water binding and emulsification capacity. However, very little is reported on how it affects the rheological properties of wheat dough. The aim of this study was therefore, to determine the rheological properties of wheat dough with partial additions of gum Arabic as an improver. Six treatments were analyzed comprising of: flour-gum blends prepared by adding gum Arabic to wheat flour at different levels (1%, 2% and 3%), plain wheat flour (negative control), commercial bread flour and commercial chapati flour (positive controls). The rheological properties were determined using Brabender Farinograph, Brabender Extensograph and Brabender Viscograph. Results showed that addition of gum Arabic significantly (p chapati. These findings support the need to utilize gum Arabic from Acacia senegal var. kerensis as a dough improver.展开更多
Gum Arabic (GA) from Acacia senegal var. kerensis has been approved as an emulsifier, stabilizer, thickener, and encapsulator in food processing industry. Chia mucilage, on the other hand, has been approved to be used...Gum Arabic (GA) from Acacia senegal var. kerensis has been approved as an emulsifier, stabilizer, thickener, and encapsulator in food processing industry. Chia mucilage, on the other hand, has been approved to be used as a fat and egg yolk mimic. However, both chia mucilage and gum Arabic are underutilized locally in Kenya;thus, marginal reports have been published despite their potential to alter functional properties in food products. In this study, the potential use of chia mucilage and gum Arabic was evaluated in the development of an eggless fat-reduced mayonnaise (FRM). The mayonnaise substitute was prepared by replacing eggs and partially substituting sunflower oil with chia mucilage at 15%, 30%, 45%, and 60% levels and gum Arabic at 3% while reducing the oil levels to 15%, 30%, 45%, and 60%. The effect of different concentrations of oil and chia mucilage on the physicochemical properties, for example, pH, emulsion stability, moisture content, protein, carbohydrate, fats, calories, ash, and titratable acidity using AOAC methods and sensory properties for both consumer acceptability and quantitative descriptive analysis of mayonnaise were evaluated and compared to the control with eggs and 75% sunflower oil. The results indicated that all fat-reduced mayonnaises had significantly lower energy to 493 kcal/100g and 20% fat content but higher water content of 0.74 than the control with 784 Kcal/100g calories, 77% fat and 0.39 moisture. These differences increased with increasing substitution levels of chia mucilage, as impacted on pH, carbohydrate, and protein. There was no significant difference between ash content for both fat-reduced mayonnaise and control. Sensory evaluation demonstrated that mayonnaises substituted with chia seeds mucilage and gum Arabic were accepted. All the parameters are positively correlated to overall acceptability, with flavor having the strongest correlation of r = 0.78. Loadings from principal component analysis (PCA) of 16 sensory attributes of mayonnaise showed that approximately over 66% of the variations in sensory attributes were explained by the first six principal components. This study shows good potential for chia mucilage and gum Arabic to be used as fat and egg mimetics and stabilizers, respectively, in mayonnaise with functional properties.展开更多
Objective: The purpose of this study was to examine the effects of continuous gum chewing exercise on perioral muscle strength. Methods: Thirty healthy adults (24.1 ± 2.0 years) with normal occlusion performed gu...Objective: The purpose of this study was to examine the effects of continuous gum chewing exercise on perioral muscle strength. Methods: Thirty healthy adults (24.1 ± 2.0 years) with normal occlusion performed gum chewing exercise 3 times daily for 3 months. Each exercise session lasted 5 min and involved alternating of chewing 10 times using the left molars and then 10 times using the right molars, with the mouth closed. The effect of the exercise on oral function was evaluated by measuring tongue pressure (TP), cheek pressure (CP), and labial closure strength (LCS) immediately before starting exercise, at 2 weeks and 1, 2, and 3 months after starting exercise, and at 3 months after cessation of exercise. Changes in TP, CP, and LCS according to sex and duration of exercise were analyzed by repeated two-way ANOVA. Results: Measurements for all muscles were significantly greater in men than in women at all time points. After starting exercise, TP was markedly increased at 2 months in men and women, and both CP and LCS were markedly increased at 2 weeks in men and at 1 month in women. These effects persisted for 3 months. Three months after cessation of exercise, TP, CP, and LCS tended to decrease, but were not significantly attenuated as compared with 3 months after beginning of exercise in either sex. Conclusion: The results of this study revealed that gum chewing exercise contributed to an improvement in perioral muscle strength, and that this effect was maintained for at least 3 months after discontinuation of exercise.展开更多
This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU))....This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.展开更多
Due to their lower environmental impact, ease of accessibility, low cost, and biodegradability, bio-renewable sources have been used extensively in the last several decades to synthesize adhesives, substituting petroc...Due to their lower environmental impact, ease of accessibility, low cost, and biodegradability, bio-renewable sources have been used extensively in the last several decades to synthesize adhesives, substituting petrochemical-based adhesive. Vegetable oils (including palm, castor, jatropha, and soybean oils), lactic acid, potato starch, and other bio-renewable sources are all excellent sources for the synthesis of adhesives that are being taken into consideration for the synthesis of “eco-friendly” adhesives. Due to their widespread use, accessibility, affordability, and biodegradability, biobased raw materials like carbohydrates used to synthesize wood and wood composite adhesive have gradually replaced petrochemical-based adhesive. Recently, xanthan gum, a naturally occurring polymer, has drawn the interest of scientists as a potentially petroleum source replacement. It possesses specific rheological characteristics, excellent water solubility, and stability to heat, and can be used as a binder, thickener, suspending agent, and stabilizer. Xanthan gum increases the adhesive strength in addition to increasing the viscosity of water-soluble adhesives. This article discusses xanthan gum as a potential substitute for traditional raw materials derived from petroleum that is used as a raw material for adhesives.展开更多
Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dis...Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.展开更多
Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil...Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.展开更多
文摘重金属汞污染是危害粮食安全的重要问题,直接进样测汞法的检测过程中需要对检测结果做好质量控制。检测结果需要识别实验过程中各环节对结果的影响大小。基于GB/T 27404—2008《实验室质量控制规范食品理化检测》附录F中对实验室开展新项目所需验证的各种项目:回收率、标准曲线、测定低限、精密度、准确度等。使用自适应蒙特卡洛法(adaptive Monte Carlo method,MCM)和测量不确定度表示指南方法(Guide to the expression of uncertainty in measurement,GUM)分别对直接进样测汞法开展不确定度评定。GUM法得到的不确定范围为(0.0193±0.0017)mg/kg(k=2);MCM法得到的不确定度置信区间(95%)为[0.0177,0.0211];使用MCM Alchimia软件对2种方法的不确定度概率密度拟合曲线,MCM法与GUM法评价结果一致性较好。分析不确定度评定过程中各不确定度贡献率,回收率和标准曲线拟合过程引入不确定度在检出限处引入的不确定度分量较大,建议在方法验证和不确定度评定中使用定量限作为加标回收率和标准曲线最小浓度点。
基金supported by Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China(202104021301052)Shanxi Provincial Patent Transformation Special Plan Project(202202054,202306013).
文摘As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.
文摘Spices are defined as any aromatic condiment of plant origin used to alter the flavor and aroma of foods. Besides flavor and aroma, many spices have antioxidant activity, mainly related to the presence in cloves of phenolic compounds, such as flavonoids, terpenoids and eugenol. In turn, the most common uses of gum arabic are in the form of powder for addition to soft drink syrups, cuisine and baked goods, specifically to stabilize the texture of products, increase the viscosity of liquids and promote the leavening of baked products (e.g., cakes). Both eugenol, extracted from cloves, and gum arabic, extracted from the hardened sap of two species of the Acacia tree, are dietary constituents routinely consumed virtually throughout the world. Both of them are also widely used medicinally to inhibit oxidative stress and genotoxicity. The prevention arm of the study included groups: Ia, IIa, IIIa, Iva, V, VI, VII, VIII. Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the same period and for an additional 9 weeks, the animals received either water, 10% GA, EUG, or 10% GA + EUG by gavage. The treatment arm of the study included groups Ib, IIb, IIIb e IVb, IX, X, XI, XII). Once a week for 20 weeks, the controls received saline s.c. while the experimental groups received DMH at 20 mg/kg s.c. During the subsequent 9 weeks, the animals received either water, 10% GA, EUG or 10% GA + EUG by gavage. The novelty of this study is the investigation of their use alone and together for the prevention and treatment of experimental colorectal carcinogenesis induced by dimethylhydrazine. Our results show that the combined use of 10% gum arabic and eugenol was effective, with antioxidant action in the colon, as well as reducing oxidative stress in all colon segments and preventing and treating genotoxicity in all colon segments. Furthermore, their joint administration reduced the number of aberrant crypts and the number of aberrant crypt foci (ACF) in the distal segment and entire colon, as well as the number of ACF with at least 5 crypts in the entire colon. Thus, our results also demonstrate the synergistic effects of 10% gum arabic together with eugenol (from cloves), with antioxidant, antigenotoxic and anticarcinogenic actions (prevention and treatment) at the doses and durations studied, in the colon of rats submitted to colorectal carcinogenesis induced by dimethylhydrazine.
基金This study was supported by the National Key Research and Development Program of China(2023YFD2100403)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+2 种基金the earmarked fund for CARS-14,the Innovation Group Project of Hubei Province(2023AFA042)the Key Research Projects of Hubei Province(2020BBA045)the Knowledge Innovation Program of Wuhan-Basic Research(3562).
文摘The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.
文摘Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to increasing consumer awareness, thus contributing to the rising demand for natural hydrocolloids. Gum Arabic from Acacia senegal var. kerensis is a natural gum exhibiting excellent water binding and emulsification capacity. However, very little is reported on how it affects the rheological properties of wheat dough. The aim of this study was therefore, to determine the rheological properties of wheat dough with partial additions of gum Arabic as an improver. Six treatments were analyzed comprising of: flour-gum blends prepared by adding gum Arabic to wheat flour at different levels (1%, 2% and 3%), plain wheat flour (negative control), commercial bread flour and commercial chapati flour (positive controls). The rheological properties were determined using Brabender Farinograph, Brabender Extensograph and Brabender Viscograph. Results showed that addition of gum Arabic significantly (p chapati. These findings support the need to utilize gum Arabic from Acacia senegal var. kerensis as a dough improver.
文摘Gum Arabic (GA) from Acacia senegal var. kerensis has been approved as an emulsifier, stabilizer, thickener, and encapsulator in food processing industry. Chia mucilage, on the other hand, has been approved to be used as a fat and egg yolk mimic. However, both chia mucilage and gum Arabic are underutilized locally in Kenya;thus, marginal reports have been published despite their potential to alter functional properties in food products. In this study, the potential use of chia mucilage and gum Arabic was evaluated in the development of an eggless fat-reduced mayonnaise (FRM). The mayonnaise substitute was prepared by replacing eggs and partially substituting sunflower oil with chia mucilage at 15%, 30%, 45%, and 60% levels and gum Arabic at 3% while reducing the oil levels to 15%, 30%, 45%, and 60%. The effect of different concentrations of oil and chia mucilage on the physicochemical properties, for example, pH, emulsion stability, moisture content, protein, carbohydrate, fats, calories, ash, and titratable acidity using AOAC methods and sensory properties for both consumer acceptability and quantitative descriptive analysis of mayonnaise were evaluated and compared to the control with eggs and 75% sunflower oil. The results indicated that all fat-reduced mayonnaises had significantly lower energy to 493 kcal/100g and 20% fat content but higher water content of 0.74 than the control with 784 Kcal/100g calories, 77% fat and 0.39 moisture. These differences increased with increasing substitution levels of chia mucilage, as impacted on pH, carbohydrate, and protein. There was no significant difference between ash content for both fat-reduced mayonnaise and control. Sensory evaluation demonstrated that mayonnaises substituted with chia seeds mucilage and gum Arabic were accepted. All the parameters are positively correlated to overall acceptability, with flavor having the strongest correlation of r = 0.78. Loadings from principal component analysis (PCA) of 16 sensory attributes of mayonnaise showed that approximately over 66% of the variations in sensory attributes were explained by the first six principal components. This study shows good potential for chia mucilage and gum Arabic to be used as fat and egg mimetics and stabilizers, respectively, in mayonnaise with functional properties.
文摘Objective: The purpose of this study was to examine the effects of continuous gum chewing exercise on perioral muscle strength. Methods: Thirty healthy adults (24.1 ± 2.0 years) with normal occlusion performed gum chewing exercise 3 times daily for 3 months. Each exercise session lasted 5 min and involved alternating of chewing 10 times using the left molars and then 10 times using the right molars, with the mouth closed. The effect of the exercise on oral function was evaluated by measuring tongue pressure (TP), cheek pressure (CP), and labial closure strength (LCS) immediately before starting exercise, at 2 weeks and 1, 2, and 3 months after starting exercise, and at 3 months after cessation of exercise. Changes in TP, CP, and LCS according to sex and duration of exercise were analyzed by repeated two-way ANOVA. Results: Measurements for all muscles were significantly greater in men than in women at all time points. After starting exercise, TP was markedly increased at 2 months in men and women, and both CP and LCS were markedly increased at 2 weeks in men and at 1 month in women. These effects persisted for 3 months. Three months after cessation of exercise, TP, CP, and LCS tended to decrease, but were not significantly attenuated as compared with 3 months after beginning of exercise in either sex. Conclusion: The results of this study revealed that gum chewing exercise contributed to an improvement in perioral muscle strength, and that this effect was maintained for at least 3 months after discontinuation of exercise.
基金financially supported by grants from the Key Scientific Research Projects of Hubei Province(2020BCA086)the National Key Research and Development Program of China(2017YFD0400200)+3 种基金Wuhan Application Fundamental Frontier Project of China(2020020601012270)the National Natural Science Foundation of China(31771938)the China Agriculture Research System of MOF and MARAthe Wuhan Achievement Transformation Project(2019030703011505)。
文摘This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.
文摘Due to their lower environmental impact, ease of accessibility, low cost, and biodegradability, bio-renewable sources have been used extensively in the last several decades to synthesize adhesives, substituting petrochemical-based adhesive. Vegetable oils (including palm, castor, jatropha, and soybean oils), lactic acid, potato starch, and other bio-renewable sources are all excellent sources for the synthesis of adhesives that are being taken into consideration for the synthesis of “eco-friendly” adhesives. Due to their widespread use, accessibility, affordability, and biodegradability, biobased raw materials like carbohydrates used to synthesize wood and wood composite adhesive have gradually replaced petrochemical-based adhesive. Recently, xanthan gum, a naturally occurring polymer, has drawn the interest of scientists as a potentially petroleum source replacement. It possesses specific rheological characteristics, excellent water solubility, and stability to heat, and can be used as a binder, thickener, suspending agent, and stabilizer. Xanthan gum increases the adhesive strength in addition to increasing the viscosity of water-soluble adhesives. This article discusses xanthan gum as a potential substitute for traditional raw materials derived from petroleum that is used as a raw material for adhesives.
基金We gratefully acknowledge financial supports from the Major Program of National Natural Science Foundation of China(Grant No.42090024)the National Natural Science Foundation of China(Grant No.52004322)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE108).
文摘Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51979267 and 52074143)the Major Science and Technology Program of Inner Mongolia,China(Grant No.2021ZD0007).
文摘Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.