To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinat...In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinate frame of case. The deflexion error and coupling error under the situation are analyzed. Finally, three methods of engraving based on the spherical triangle pattern are presented. The error models of various methods are built up and the simulation curves are provided respectively. We have done the primary experiments on the surface of rotor using this method. It can be seen from the enlarged figures that the rim of the pattern is smooth and the demand of sensor resolution is satisfied by and large. The results of study supply reference for signal obtaining.展开更多
According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is propose...According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.展开更多
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod...In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.展开更多
The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the cha...The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.展开更多
Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dy...Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that the gimbal axes of the two SGCMGs are installed in any direction, and that the total system angular momentum is not zero, a state feedback control law via Lyapunov method is designed to globally asymptotically stabilize the angular velocity of spacecraft. Under the assumption that the gimbal axes of the two SGCMGs are coaxially installed along anyone of the three principal axes of spacecraft inertia, and that the total system angular momentum is zero, a discontinuous state feedback control law is designed to stabilize three-axis attitude of spacecraft with respect to the inertial frame. Furthermore, the singularity escape of SGCMGs for the above two control problems is also studied. Simulation results demonstrate the validity of the control laws.展开更多
In this paper, the chaotic generalized projective synchronization of a controlled, noised gyro with an expected gyro is investigated by a simple control law. Based on the theory of discontinuous dynamical systems, the...In this paper, the chaotic generalized projective synchronization of a controlled, noised gyro with an expected gyro is investigated by a simple control law. Based on the theory of discontinuous dynamical systems, the necessary and sufficient conditions for such a synchronization are achieved. From such conditions, non-synchronization, partial and full synchronizations between the two coupled gyros are discussed. The switching scenarios between desynchronized and synchronized states of the two dynamical systems are shown. Numerical simulations are illustrated to verify the effectiveness of this method.展开更多
The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGC...The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.展开更多
This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To th...This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To this end,a disturbance observer based on neural network is developed for active anti-disturbance,so as to improve the accuracy of fault diagnosis.The periodic disturbance on orbit can be decoupled with fault by resorting to the fitting and memory ability of neural network.Subsequently,the fault diagnosis scheme is established based on the idea of information fusion.The data of spacecraft attitude and gimbals position are combined to implement fault isolation and estimation based on adaptive estimator and neural network.Then,an adaptive sliding mode controller incorporating the disturbance and fault estimation results is designed to achieve active fault-tolerant control.In addition,the paper gives the proof of the stability of the proposed schemes,and the simulation results show that the proposed scheme achieves better diagnosis and control results than compared algorithm.展开更多
Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in usi...Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.展开更多
We present how residual intensity modulation(RIM) affects the performance of a resonator fiber optic gyro(R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system's demodula...We present how residual intensity modulation(RIM) affects the performance of a resonator fiber optic gyro(R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system's demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value; however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be considered when designing and evaluating an R-FOG system.展开更多
Accuracy improvement of MEMS gyros requires not only microelectronic development but also the investigations of th mathematical model of sensitive element dynamics. In the present paper, we study the errors of the vib...Accuracy improvement of MEMS gyros requires not only microelectronic development but also the investigations of th mathematical model of sensitive element dynamics. In the present paper, we study the errors of the vibrating microgyroscop which arise because of nonlinear dynamics of a sensitive element. A MEMS tuning fork gyroscope with elastic rods is consid ered. Nonlinear differential equations of bending vibrations of sensitive element on the moving basis are derived. Free nonlin ear vibrations of gyroscopes as the flexible rod are studied. Nonlinear dynamics of gyroscope on the moving basis are investi gated by asymptotic two scales method. Sensitive element frequencies split on two frequencies resulted from slowly changin angular velocity are taken into account in the equations of zero approximation. The differential equations for slowly changin amplitudes and phases of two normal waves of the oscillations measured by capacitor gauges and an electronic contour of th device are obtained from the equations of the first approximation.展开更多
Focusing on the singularities of a spacecraft using control moment gyros(CMGs)to do the large angle maneuvers,a new mixture steering law is proposed to avoid the singularities.According to this method,if the CMGs are ...Focusing on the singularities of a spacecraft using control moment gyros(CMGs)to do the large angle maneuvers,a new mixture steering law is proposed to avoid the singularities.According to this method,if the CMGs are far away from the singularity,the Moore-Penrose pseudo-inverse steering law(MP)is used directly.If the CMGs are close to the singularity,instead of solving the inverse matrix,a set of optimal gimbal angles are sought for the singular measurement to reach the maximum,which can avoid the singularities.Simulations show that the designed steering law enables the spacecraft to carry out the large angle maneuver and avoid the singularities simultaneously.展开更多
The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improv...The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.展开更多
A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly...A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated.展开更多
A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the ou...A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.展开更多
This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular ...This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.展开更多
Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim...Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
文摘In this paper, a photoelectric signal obtained scheme via equator triangle pattern engraved on rotor is discussed and the mathematic model is deduced in the case which is deflexion between rotor axis and the coordinate frame of case. The deflexion error and coupling error under the situation are analyzed. Finally, three methods of engraving based on the spherical triangle pattern are presented. The error models of various methods are built up and the simulation curves are provided respectively. We have done the primary experiments on the surface of rotor using this method. It can be seen from the enlarged figures that the rim of the pattern is smooth and the demand of sensor resolution is satisfied by and large. The results of study supply reference for signal obtaining.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50979093)
文摘According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.
文摘In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
文摘The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
文摘Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that the gimbal axes of the two SGCMGs are installed in any direction, and that the total system angular momentum is not zero, a state feedback control law via Lyapunov method is designed to globally asymptotically stabilize the angular velocity of spacecraft. Under the assumption that the gimbal axes of the two SGCMGs are coaxially installed along anyone of the three principal axes of spacecraft inertia, and that the total system angular momentum is zero, a discontinuous state feedback control law is designed to stabilize three-axis attitude of spacecraft with respect to the inertial frame. Furthermore, the singularity escape of SGCMGs for the above two control problems is also studied. Simulation results demonstrate the validity of the control laws.
基金supported by the National Natural Science Foundation of China (Grant No. 51075275)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 08kJB510006)
文摘In this paper, the chaotic generalized projective synchronization of a controlled, noised gyro with an expected gyro is investigated by a simple control law. Based on the theory of discontinuous dynamical systems, the necessary and sufficient conditions for such a synchronization are achieved. From such conditions, non-synchronization, partial and full synchronizations between the two coupled gyros are discussed. The switching scenarios between desynchronized and synchronized states of the two dynamical systems are shown. Numerical simulations are illustrated to verify the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (No.10902003)
文摘The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.
基金supported in part by the National Natural Science Foundation of China(Nos.61960206011,61903018,61633003)the National Defense Basic Scientific Research program of China(No.JCKY2018203B022)+1 种基金Beijing Natural Science Foundation of China(No.JQ19017)the China Postdoctoral Science Foundation(No.2021M690300)。
文摘This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To this end,a disturbance observer based on neural network is developed for active anti-disturbance,so as to improve the accuracy of fault diagnosis.The periodic disturbance on orbit can be decoupled with fault by resorting to the fitting and memory ability of neural network.Subsequently,the fault diagnosis scheme is established based on the idea of information fusion.The data of spacecraft attitude and gimbals position are combined to implement fault isolation and estimation based on adaptive estimator and neural network.Then,an adaptive sliding mode controller incorporating the disturbance and fault estimation results is designed to achieve active fault-tolerant control.In addition,the paper gives the proof of the stability of the proposed schemes,and the simulation results show that the proposed scheme achieves better diagnosis and control results than compared algorithm.
基金support from the National Natural Science Foundation of China (No. 61403197)the National Key Research and Development Plan of China (No. 2016YFB0500901)
文摘Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.
基金Project supported by the Zhejiang Provincial Natural ScienceFoundation of China(No.LQ13F050001)
文摘We present how residual intensity modulation(RIM) affects the performance of a resonator fiber optic gyro(R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system's demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value; however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be considered when designing and evaluating an R-FOG system.
基金supported by the Russian Foundation for Basic Research (Grant Nos. 09-01-00756-a, 09-08-01184-a)
文摘Accuracy improvement of MEMS gyros requires not only microelectronic development but also the investigations of th mathematical model of sensitive element dynamics. In the present paper, we study the errors of the vibrating microgyroscop which arise because of nonlinear dynamics of a sensitive element. A MEMS tuning fork gyroscope with elastic rods is consid ered. Nonlinear differential equations of bending vibrations of sensitive element on the moving basis are derived. Free nonlin ear vibrations of gyroscopes as the flexible rod are studied. Nonlinear dynamics of gyroscope on the moving basis are investi gated by asymptotic two scales method. Sensitive element frequencies split on two frequencies resulted from slowly changin angular velocity are taken into account in the equations of zero approximation. The differential equations for slowly changin amplitudes and phases of two normal waves of the oscillations measured by capacitor gauges and an electronic contour of th device are obtained from the equations of the first approximation.
基金supported by the National Natural Sciences Foundation of China(Grant No.11172036)the Excellent Young Scholars Rearch Fund of Beijing Institute of Technology(Grant No.2012YG0101)
文摘Focusing on the singularities of a spacecraft using control moment gyros(CMGs)to do the large angle maneuvers,a new mixture steering law is proposed to avoid the singularities.According to this method,if the CMGs are far away from the singularity,the Moore-Penrose pseudo-inverse steering law(MP)is used directly.If the CMGs are close to the singularity,instead of solving the inverse matrix,a set of optimal gimbal angles are sought for the singular measurement to reach the maximum,which can avoid the singularities.Simulations show that the designed steering law enables the spacecraft to carry out the large angle maneuver and avoid the singularities simultaneously.
文摘The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.
文摘A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated.
文摘A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.
文摘This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.
基金supported by the National Natural Science Foundation of China (10872029)the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (2007YS0202)
文摘Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.