期刊文献+
共找到4,819篇文章
< 1 2 241 >
每页显示 20 50 100
Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks
1
作者 Wuyang Fan Shisheng Zhong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2525-2555,共31页
The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment.In dynamic balance debugging,reliance on rudimentary counterwei... The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment.In dynamic balance debugging,reliance on rudimentary counterweight empirical formulas persists,resulting in suboptimal debugging accuracy and an increased repetition rate.To mitigate this challenge,we present a multi-head residual graph attention network(ResGAT)model,designed to predict dynamic balance counterweights with high precision.In this research,we employ graph neural networks for interaction feature extraction from assembly graph data.An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for the ResGAT regression model,which is capable of predicting gyroscope counterweights under small-sample conditions.The results of our experiments demonstrate the effectiveness of the proposed approach in predicting dynamic gyroscope counterweight in its assembly process.Our approach surpasses current methods in mitigating repetition rates and enhancing the assembly efficiency of gyroscopes. 展开更多
关键词 gyroscope COUNTERWEIGHT ASSEMBLY small-sample ResGAT repetition rate
下载PDF
Quasi-anti-parity–time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
2
作者 耿靖童 徐书逸 +4 位作者 靳婷 丁舒林 杨柳 王颖 张勇刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期436-440,共5页
Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(... Parity–time(PT) and quasi-anti-parity–time(quasi-APT) symmetric optical gyroscopes have been proposed recently which enhance Sagnac frequency splitting. However, the operation of gyroscopes at the exceptional point(EP) is challenging due to strict fabrication requirements and experimental uncertainties. We propose a new quasi-APT-symmetric micro-optical gyroscope which can be operated at the EP by easily shifting the Kerr nonlinearity. A single resonator is used as the core sensitive component of the quasi-APT-symmetric optical gyroscope to reduce the size, overcome the strict structural requirements and detect small rotation rates. Moreover, the proposed scheme also has an easy readout method for the frequency splitting. As a result, the device achieves a frequency splitting 10~5 times higher than that of a classical resonant optical gyroscope with the Earth's rotation. This proposal paves the way for a new and valuable method for the engineering of micro-optical gyroscopes. 展开更多
关键词 optical gyroscopes quasi-anti-parity–time(quasi-APT)symmetric system exceptional point(EP) the Kerr nonlinearity
下载PDF
Online asymmetry estimation for whole angle mode coriolis vibratory gyroscopes by high frequency injection 被引量:1
3
作者 Xiang-rui Meng Chong Li Yu-chen Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期314-325,共12页
The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based... The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values. 展开更多
关键词 Rate-integrating gyroscope(RIG) Whole angle mode gyroscope(WAMG) Coriolis vibrating gyroscope(CVG) Online calibration Online identification Online estimation
下载PDF
Design and simulation of a silicon-based hybrid integrated optical gyroscope system
4
作者 孙道鑫 张东亮 +4 位作者 鹿利单 徐涛 郑显通 周哲海 祝连庆 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期397-404,共8页
By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4resonator with silicon-based photonics technology,a highly systematic design of a hybrid integrated optical gyroscope with enhanced recip... By combining a silicon-based lithium niobate modulator and a silicon-based Si3N4resonator with silicon-based photonics technology,a highly systematic design of a hybrid integrated optical gyroscope with enhanced reciprocity sensitivity and a dual micro-ring structure is proposed for the first time in this paper.The relationship between the device's structural parameters and optical performance is also analyzed by constructing a complete simulation link,which provides a theoretical design reference to improve the system's sensitivity.When the wavelength is 1550 nm,the conversion frequency of the dual-ring optical path is 50 MHz,the coupling coefficient is 0.2,and the radius R is 1000μm,the quality factor of the silicon-based Si_(3)N_(4)resonator is 2.58×10^(5),which is 1.58 times that of the silicon-on-insulator resonator.Moreover,the effective number of times the light travels around the ring before leaving the micro-ring is 5.93,which is 1.62 times that of the silicon-on-insulator resonator.The work fits the gyro dynamic output diagram,and solves the problem of low sensitivity at low speed by setting the phase offset.This results provide a basis for the further optimization of design and chip processing of the integrated optical gyroscope. 展开更多
关键词 silicon photonics integrated optical gyroscope micro-ring resonator Sagnac effect
下载PDF
The Correlation of Gyroscope Axial Velocities
5
作者 Ryspek Usubamatov 《Journal of Mechanical Materials and Mechanics Research》 2023年第1期36-40,共5页
In engineering,all movable expanse revolving objects manifest gyroscopic effects.These effects are created by the action of the outer load on the revolving items whose rotating mass originates eight inertial torques a... In engineering,all movable expanse revolving objects manifest gyroscopic effects.These effects are created by the action of the outer load on the revolving items whose rotating mass originates eight inertial torques about two axes.Two torques of centrifugal forces,one torque of the Coriolis force originated by the rotating distributed mass,and the torque of the change in the angular momentum of the center mass act about each axis.The inertial torques activate rotations of the gyroscope by the determined correlation.Inertial torques depend on their geometry and orientation at the spatial coordinate system.The known analytical model for the rotation of the revolving disc about axes contains a mechanical error.This error was obtained by the incorrect integration of the centrifugal inertial torque.The corrected inertial torque yields the accurate expression for the interacted rotations of the revolving disc about axes. 展开更多
关键词 gyroscope theory Inertial torque Correlation of angular velocities
下载PDF
Periodic Error Compensation for Quartz MEMS Gyroscope Drift of INS 被引量:14
6
作者 Xu Jianmao Zhang Haipeng Sun Junzhong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期539-545,共7页
In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the pe... In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the periodic error term relationship between sampled original data and smoothed data are reviewed. On the base of the results, a new compensation method called using former period characteristics to compensate latter smoothness data (UFCL for short) method is proposed considering the INS working characteristics. This new method uses the original data without smoothing to work out an error conversion formula at the INS initial alignment time and then compensate the smoothed data errors by way of the formula at the navigation time. Both theoretical analysis and experimental results demonstrate that this method is able to cut down on computational time and raise the accuracy which makes it a better real-time compensation approach for periodic error terms of quartz micro electronic mechanical system (MEMS) gyroscope's zero drift. 展开更多
关键词 real-time compensation quartz MEMS gyroscope periodic error period characteristic inertial navigation system (INS)
下载PDF
Influence of flexible solar arrays on vibration isolation platform of control moment gyroscopes 被引量:9
7
作者 Yao Zhang Jing-Rui Zhang Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1479-1487,共9页
A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of ... A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of flexible solar arrays on a passive multi-strut VIP of CMGs for a satellite is analyzed. The reasonable parameters design of flexi- ble solar arrays is discussed. Firstly, the dynamic model of the integrated satellite with flexible solar arrays, the VIP and CMGs is conducted by Newton-Euler method. Then based on reasonable assumptions, the transmissibility matrix of the VIP is derived. Secondly, the influences of the flexible solar arrays on both the performance of the VIP and the stability of closed-loop control systems are analyzed in detail. The parameter design limitation of these solar arrays is discussed. At last, by selecting reasonable parameters for both the VIP and flexible solar arrays, the attitude stabilization performance with vibration isolation system is predicted via simulation. 展开更多
关键词 Control moment gyroscope Vibration isolationplatform Attitude control Ultra quiet platform
下载PDF
Effect of radiation-induced mean wavelength shift in optical fibers on the scale factor of an interferometric fiber optic gyroscope at a wavelength of 1300 nm 被引量:7
8
作者 金靖 王学勤 +1 位作者 林松 宋凝芳 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期366-372,共7页
In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOG... In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs. 展开更多
关键词 space radiation fiber optic gyroscope scale factor mean wavelength
下载PDF
Modeling and Analysis of Mechanical Quality Factor of the Resonator for Cylinder Vibratory Gyroscope 被引量:5
9
作者 XI Xiang WU Xuezhong +1 位作者 WU Yulie ZHANG Yongmeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期180-189,共10页
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration p... Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiA1), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator. 展开更多
关键词 mechanical Quality factor cylinder vibratory gyroscope energy loss
下载PDF
Filtering of long-term dependent fractal noise in fiber optic gyroscope 被引量:5
10
作者 Chunhong Hua Zhang Ren Minhu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1041-1045,共5页
Stochastic noises of fiber optic gyroscope (FOG) mainly contain white noise and fractal noise whose long-term dependent component causes FOG a rather slow drift. In order to eliminate this component, a two-step filt... Stochastic noises of fiber optic gyroscope (FOG) mainly contain white noise and fractal noise whose long-term dependent component causes FOG a rather slow drift. In order to eliminate this component, a two-step filtering methodology is proposed. Firstly, fractional differencing (FD) method is introduced to trans-form fractal noise into fractional white noise based on the estima-tion of Hurst exponent for long-term dependent fractal process, which together with the existing white noise make up of a gener-alized white noise. Further, an improved denoising algorithm of wavelet maxima is developed to suppress the generalized white noise. Experimental results show that the basic noise terms of FOG greatly decrease, and especially the slow drift is restrained effectively. The proposed methodology provides a promising ap-proach for filtering long-term dependent fractal noise. 展开更多
关键词 fiber optic gyroscope (FOG) fractal noise long-term dependence fractional differencing wavelet denoising.
下载PDF
Low drift nuclear spin gyroscope with probe light intensity error suppression 被引量:3
11
作者 范文峰 全伟 +2 位作者 刘峰 段利红 刘刚 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期129-133,共5页
A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. Howe... A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. However, the fluctuation of probe light intensity is one of the main technical error sources that limits the bias stability of the gyroscope. Here we propose a novel method to suppress the bias error induced by probe light intensity fluctuations. This method is based on the inherent magnetic field response characteristics of the gyroscope. By the application of a bias magnetic field, the gyroscope can be tuned to a working point where the output signal is insensitive to probe light intensity variation, referred to herein as ‘zero point’, thus the bias error induced by intensity fluctuations can be completely suppressed. The superiority of the method was verified on a K–Rb–21 Ne co-magnetometer, and a bias stability of approximately 0.01°/h was obtained. In addition, the method proposed here can remove the requirement of the closed-loop control of probe light intensity, thereby facilitating miniaturization of the gyroscope volume and improvement of reliability. 展开更多
关键词 nuclear spin gyroscope SPIN-EXCHANGE relaxation-free ERROR SUPPRESSION PROBE light intensity
下载PDF
High Resolution Differential Capacitance Detection Scheme for Micro Levitated Rotor Gyroscope 被引量:2
12
作者 Huang Xiaogang Chen Wenyuan Liu Wu Zhang Weiping Wu Xiaosheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期546-551,共6页
A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity si... A differential capacitance detection circuit aiming at detection of rotating angle in a novel levitation structure is presented. To ensure the low non-linearity and high resolution, noise analysis and non-linearity simulation are conducted. In the capacitance interface, an integral charge amplifier is adopted as a front end amplifier to reduce the parasitic capacitance caused by connecting wire. For the novel differential capacitance bridge with a coupling capacitor, the noise floor and non-linearity of the detection circuit are analyzed, and the results show that the detecting circuit is capable of realizing angle detection with high angular resolution and relative low non-linearity. With a specially designed printed circuit board, the circuit is simulated by PSpice. The practical experiment shows that the detection board can achieve angular resolution as high as 0.04° with a non-linearity error 2.3%. 展开更多
关键词 MEMS micro gyroscope capacitance sensing inertial sensor angle detection
下载PDF
Finite-time stabilization of uncertain non-autonomous chaoticgyroscopes with nonlinear inputs 被引量:3
13
作者 M.P.AGHABABA H.P.AGHABABA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第2期155-164,共10页
Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of th... Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results. 展开更多
关键词 non-autonomous chaotic gyroscope finite-time control nonlinear input uncertainty unknown parameter
下载PDF
Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application 被引量:3
14
作者 金靖 李亚 +2 位作者 张祖琛 吴春晓 宋凝芳 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期216-221,共6页
The effects of color centers' absorption on fibers and interferometric fiber optical gyroscopes(IFOGs) are studied in the paper. The irradiation induced attenuation(RIA) spectra of three types of polarization-mai... The effects of color centers' absorption on fibers and interferometric fiber optical gyroscopes(IFOGs) are studied in the paper. The irradiation induced attenuation(RIA) spectra of three types of polarization-maintaining fibers(PMFs), i.e.,P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers' absorption on RIA and mean wavelength shifts(MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient(RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments. 展开更多
关键词 color centers' absorption radiation-induced attenuation mean wavelength shift fiber optical gyroscope
下载PDF
Design and Characterization of a Novel Z-axis Quartz Cross-fork Micromachined Gyroscope 被引量:2
15
作者 XIE Liqiang WU Xuezhong +3 位作者 LI Shengyi WANG Haoxu TAO Yi DONG Peitao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期50-57,共8页
The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a c... The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a challenge for present processes, and the imperfect fabrication process seriously affects the performances of the sensors. In this paper, a novel quartz cross-fork structure micromachined gyroscope is proposed. The sensor has a simple structure in x-y plane of quartz crystal. Unlike other quartz gyroscopes, the proposed gyroscope is based on shear stress detection to sense Coriolis’ force rather than normal stress detection. This feature can simplify the sensing electrode patterns and miniaturize the structure easily. Then the mechanical analysis of the structure is discussed. In order to obtain high sensitivities and uniform characteristics between different structures, the sensing beam is designed to be tapered, and the taper should be appreciably greater than 1°. This scheme is validated by finite element analysis software. The dynamic characteristic of the structure is analyzed by lumped parameter model. The dynamic stress in the beam and the detection sensitivity are deduced to optimize the structure parameter of gyroscope. Finally, the gyroscope is fabricated by quartz anisotropic wet etching. The prototype is characterized as follows. The drive mode frequency is 13.38 kHz, and the quality factor is about 900 in air. The scale factor is 1.45 mV/((°) s –1 ) and the nonlinearity is 3.6% in the dynamic range of ±200°/s. Process and test results show that the proposed quartz gyroscope can achieve a high performance at atmosphere pressure. The research can simplify the fabrication of the quartz gyroscope, and is taken as a novel method for the design of quartz gyroscope. 展开更多
关键词 quartz gyroscope cross-fork dynamic analysis Coriolis’ force
下载PDF
Continuous Dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope 被引量:10
16
作者 姚战伟 鲁思滨 +4 位作者 李润兵 王锴 曹雷 王谨 詹明生 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期41-44,共4页
We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase ... We present an experimental demonstration of the rotation measurement using a compact cold atom gyroscope. Atom interference fringes are observed in the stationary frame and the rotating frame, respectively. The phase shift and contrast of the interference fringe are experimentally investigated. The results show that the contrast of the interference fringe is well held when the platform is rotated, and the phase shift of the interference fringe is linearly proportional to the rotation rate of the platform. The long-term stability, which is evaluated by the overlapped Allan deviation, is 8.5 × 10^-6 rad/s over the integrating time of 1000s. 展开更多
关键词 of on as is in Continuous Dynamic Rotation Measurements Using a Compact Cold Atom gyroscope
下载PDF
Dynamic characteristics of resonant gyroscopes study based on the Mathieu equation approximate solution 被引量:2
17
作者 樊尚春 李艳 +2 位作者 郭占社 李晶 庄海涵 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期58-65,共8页
Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the ap... Dynamic characteristics of the resonant gyroscope are studied based on the Mathieu equation approximate solution in this paper.The Mathieu equation is used to analyze the parametric resonant characteristics and the approximate output of the resonant gyroscope.The method of small parameter perturbation is used to analyze the approximate solution of the Mathieu equation.The theoretical analysis and the numerical simulations show that the approximate solution of the Mathieu equation is close to the dynamic output characteristics of the resonant gyroscope.The experimental analysis shows that the theoretical curve and the experimental data processing results coincide perfectly,which means that the approximate solution of the Mathieu equation can present the dynamic output characteristic of the resonant gyroscope.The theoretical approach and the experimental results of the Mathieu equation approximate solution are obtained,which provides a reference for the robust design of the resonant gyroscope. 展开更多
关键词 resonant gyroscopes dynamic characteristics Mathieu equation approximate solution
下载PDF
Application of Ultrasonic Motor to Control of Moment Gyroscope Gimbal Servo System 被引量:1
18
作者 Wu Jintao Pan Song +2 位作者 Zhao Lei Wu Dengyun Zhang Jiyang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第1期15-21,共7页
Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accur... Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accuracy and output torque smoothness of the CMG depends more on its gimbal servo system.Considering the constraints of size,mass and power consumption for a small satellite,here,a mini-CMG is designed,in which the gimbal servo system is driven by an ultrasonic motor.The good performances of the CMG are obtained by both the ultrasonic motor and the rotary inductosyn.The direct drive of gimbal improves its dynamic performance,with the output bandwidth above 20 Hz.The angular and speed closed-loop control obtains the 0.02°/s gimbal rate,and the output torque resolution better than 2×10^(-3) N·m.The ultrasonic motor provides 1.0N·m self-lock torque during power-off,with 12arc-second position accuracy. 展开更多
关键词 CONTROL MOMENT gyroscope gimbal SERVO system ULTRASONIC MOTOR
下载PDF
Research and test of the adaptive quadrature demodulation technology for silicon micro-machined gyroscope 被引量:3
19
作者 王玉良 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期118-122,共5页
A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locke... A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future. 展开更多
关键词 Silicon Micro-machined gyroscope (SMG) adaptive filtering technology quadrature demodulation Field Programmable Gate Array(FPGA)
下载PDF
FABRICATION AND TEST OF AN ELECTROMAGNETIC VIBRATING RING GYROSCOPE BASED ON SOI WAFER 被引量:2
20
作者 Liu Jili Chen Deyong Wang Junbo 《Journal of Electronics(China)》 2014年第2期168-173,共6页
Mode matching is the key to improve the performance of micro-machined vibrating ring gyroscopes.Mass and stiffness asymmetries can lend to normal modes badly mismatch for gyroscopes fabricated by single-crystal silico... Mode matching is the key to improve the performance of micro-machined vibrating ring gyroscopes.Mass and stiffness asymmetries can lend to normal modes badly mismatch for gyroscopes fabricated by single-crystal silicon.The mismatch of the normal nodes results in large normal mode frequency split and degraded sensitivity.To address this issue,a Silicon-On-Insulator(SOI) wafer is used to fabricate the sensor chips.Meanwhile,a compensate disk and the backside coated negative photo resist(AZ303) is employed to weaken the Lag and Footing effect during the Deep Reactive Ion Etching(DRIE) process.Test results reveal that frequency split between the normal modes is of less than 10 Hz before the following electronic tuning.Thus,the mode matching of the electromagnetic vibrating ring gyroscope is probable to be realized. 展开更多
关键词 Vibrating ring gyroscope Mode matching Silicon-On-Insulator(SOI)
下载PDF
上一页 1 2 241 下一页 到第
使用帮助 返回顶部