Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission sc...Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood,the limiting factor for habitats for saproxylic species in European boreal forests.The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood.We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland.We simulated seven forest management regimes and three climate scenarios(reference,RCP4.5 and RCP8.5)over 100 years.Management regimes included set aside,continuous cover forestry,business-as-usual(BAU)and four modifications of BAU.Habitat suitability was assessed using a speciesspecific habitat suitability index,including 21 fungal and invertebrate species groups.“Winner”and“loser”species were identified based on the modelled impacts of forest management and climate change on their habitat suitability.We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change.Habitat suitability index varied by over 250%among management regimes,while overall change in habitat suitability index caused by climate change was on average only 2%.More species groups were identified as winners than losers from impacts of climate change(52%–95%were winners,depending on the climate change scenario and management regime).The largest increase in habitat suitability index was achieved under set aside(254%)and the climate scenario RCP8.5(>2%),while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species(up to+11%)across all climate change scenarios.Our results show that close-to-nature management regimes(e.g.,continuous cover forestry and set aside)can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime.This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices,even as climate change progresses.展开更多
[Objective] This study was to overview the research progress and thoughts of habitat suitability evaluation of citrus based on ecological niche theory. [Method] The research progress on habitat suitability evaluation ...[Objective] This study was to overview the research progress and thoughts of habitat suitability evaluation of citrus based on ecological niche theory. [Method] The research progress on habitat suitability evaluation and ecological niche theory to the niche selection of crops were comprehensively analyzed. [Result] The research thoughts of using niche theory to evaluate the habitat suitability of citrus with quality constraint were put forward, including collection and expression of citrus ecological environment and quality factors, interactive response study of the citrus ecological environment and quality, and habitat suitability evaluation and adaptation mechanism study of citrus based on quality constraint. [Conclusion] This study provided references for the development of citrus industrialization.展开更多
Habitat evaluation constitutes an important and fundamental step in the management of wildlife populations and conservation policy planning. Geographic information system (GIS) and species presence data provide the ...Habitat evaluation constitutes an important and fundamental step in the management of wildlife populations and conservation policy planning. Geographic information system (GIS) and species presence data provide the means by which such evaluation can be done. Maximum Entropy (MaxEnt) is widely used in habitat suitability modeling due to its power of accuracy and additional descriptive properties To survey snow leopard populations in Qomolangma (Mt. Everest) National Nature Reserve (QNNR), Xizang (Tibet), China, we pooled 127 pugmarks, 415 scrape marks, and 127 non-invasive identifications of the animal along line transects and recorded 87 occurrences through camera traps from 2014-2017. We adopted the MaxEnt model to generate a map highlighting the extent of suitable snow leopard habitat in QNNR. Results showed that the accuracy of the MaxEnt model was excellent (mean AUC=0.921). Precipitation in the driest quarter, ruggedness, elevation, maximum temperature of the warmest month, and annual mean temperature were the main environmental factors influencing habitat suitability for snow leopards, with contribution rates of 20.0%, 14.4%, 13.3%, 8.7%, and 8.2% respectively The suitable habitat area extended for 7 001.93 km^2, representing 22.72% of the whole reserve. The regions bordering Nepal were the main suitable snow leopard habitats and consisted of three separate habitat patches Our findings revealed that precipitation, temperature conditions, ruggedness, and elevations of around 4 000 m a.s.I, influenced snow leopard preferences at the landscape level in QNNR. We advocate further research and cooperation with Nepal to evaluate habitat connectivity and to explore possible proxies of population isolation among these patches. Furthermore, evaluation of subdivisions within the protection zones of QNNR is necessary to improve conservation strategies and enhance protection.展开更多
The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and i...The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.展开更多
Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-s...Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.展开更多
HabRat richness influences and even determines biological diversity. Plant habitat suitability assessment can provide technical guidance and information support for ecological restoration. Thirteen factors in three ca...HabRat richness influences and even determines biological diversity. Plant habitat suitability assessment can provide technical guidance and information support for ecological restoration. Thirteen factors in three categories of terrain, meteorology and soil were chosen to build a habitat suitability assessment index framework in the Upper Reaches of the Min River, based on the local natural environment and the actual influencing factors of vegetative growth. Combined with the Analytic Hierarchy Process (AHP) and entropy method, which were used to calculate weights of indexes, habitat suitability was studied by using a multi-objective linear weighting model and geographic information systems (GIS) spatial analysis techniques. The assessment results are as follows: Altitude, soil stability, aspect and slope have more important effects on plant habitat suitability in the Upper Reaches of the Min River, and their weights are o.311, 0.260, o.198 and o.125, respectively. Suitable and sub-suitable habitats cover 4431.8o km2 and 6171.12 km2, respectively; most of which are distributed along both sides of rivers and have higher suitability. Unsuitable habitats cover the largest area (6679.76 km2), accounting for 29.83% of the whole area; and the worst unsuitable habitats are 5107.23 km2 (22.81%); they account for more than half of the study area. These results indicate that the plant habitat in the Upper Reaches of the Min River is poor and ecological restoration is both urgent and difficult. Therefore, based on the principle of taking measures suitable to the habitat in ecological restoration projects, ecological and engineering measures should be combined to have better effects, while increasing the strength of ecological protection.展开更多
Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abu...Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.展开更多
Massive geological landslides and unstable landslide areas were triggered by the 2008 Wenchuan earthquake. These landslides caused deaths, damaged infrastructure and threatened endanger species. This study analyzed th...Massive geological landslides and unstable landslide areas were triggered by the 2008 Wenchuan earthquake. These landslides caused deaths, damaged infrastructure and threatened endanger species. This study analyzed the impact of landslides on giant pandas and their habitats from the following aspects: threatening pandas‘ lives, damaging pandas‘ habitat, influencing giant panda behavior, increasing habitat fragmentation; the final aspect, and blocking gene flow by cutting off corridors. A habitat suitability map was created by integrating the landslide factors with other traditional factors based on a logistics regression method. According to the landslide inventory map, there are 1313 landslides, 818 rock debris flows, 117 rock avalanches and 43 mud flows occurred in the study area. A correlation analysis indicated that landslides caused the pandas to migrate, and the core landslides within 1 km2 had greater influence on panda migration. These core landslides primarily occurred in mid-altitude regionscharacterized by high slopes, old geological ages, large areas and large rock mass volumes. The habitat suitability assessment results for the Wolong Natural Reserve had better prediction performance(80.9%) and demonstrated that 14.5%, 15.9%, 20.5%, 47.6% and 1.5% of the study area can be classified as very high, high, moderate, low and very low giant panda suitability areas, respectively. This study can be used to inform panda and panda habitat research, management and protection during post-quake reconstruction and recovery periods in China.展开更多
Understanding the influence of environmental covariates on plant distribution is critical,especially for aquatic plant species.Climate change is likely to alter the distribution of aquatic species.However,knowledge of...Understanding the influence of environmental covariates on plant distribution is critical,especially for aquatic plant species.Climate change is likely to alter the distribution of aquatic species.However,knowledge of this change on the burden of aquatic macroorganisms is often fraught with difficulty.Ottelia,a model genus for studying the evolution of the aquatic family Hydrocharitaceae,is mainly distributed in slow-flowing creeks,rivers,or lakes throughout pantropical regions in the world.Due to recent rapid climate changes,natural Ottelia populations have declined significantly.By modeling the effects of climate change on the distribution of Ottelia species and assessing the degree of niche similarity,we sought to identify high suitability regions and help formulate conservation strategies.The models use known background points to determine how environmental covariates vary spatially and produce continental maps of the distribution of the Ottelia species in Africa.Additionally,we estimated the possible influences of the optimistic and extreme pessimistic representative concentration pathways scenarios RCP 4.5 and RCP 8.5 for the 2050s.Our results show that the distinct distribution patterns of studied Ottelia species were influenced by topography(elevation)and climate(e.g.,mean temperature of driest quarter,annual precipitation,and precipitation of the driest month).While there is a lack of accord in defining the limiting factors for the distribution of Ottelia species,it is clear that water-temperature conditions have promising effects when kept within optimal ranges.We also note that climate change will impact Ottelia by accelerating fragmentation and habitat loss.The assessment of niche overlap revealed that Ottelia cylindrica and O.verdickii had slightly more similar niches than the other Ottelia species.The present findings identify the need to enhance conservation efforts to safeguard natural Ottelia populations and provide a theoretical basis for the distribution of various Ottelia species in Africa.展开更多
The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic inf...The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic information system framework. The seven input variables of the HSI model were sediment composition, water temperature, salinity, dissolved oxygen, water depth, p H, and ammonia. A non-linear suitability function for each variable factor was used to transform the value into a normalized quality index ranging from 0(nonsuitability) to 1(best suitability). In present study, the analysis of habitat suitability was conducted for four seasons respectively. The majority of the study area has a high HSI value(>0.6) year round, which implies a strong suitability for restoration, with the optimal habitat located on the eastern side of the island.Correspondence analysis indicated that water temperature was the main factor causing seasonal variation,while sediment composition and water depth were the two major reasons for the differences in sites. The results of this work could provide support for restoration decision making through identification of potential sites for sustainable establishment of S. subcrenata.展开更多
We present a GIS-based habitat suitability index(HSI) model to identify suitable areas for Zostera marina L. restoration in the subtidal zone of Xiaoheishan Island. The controlling factors in the model,in order of imp...We present a GIS-based habitat suitability index(HSI) model to identify suitable areas for Zostera marina L. restoration in the subtidal zone of Xiaoheishan Island. The controlling factors in the model,in order of importance,are Secchi depth,sediment composition,water temperature,salinity,current velocity,water depth and nutrient quality. Specific factor piecewise functions have been used to transform parameter values into normalized quality indexes. The weight of each factor was defined using expert knowledge and the analytic hierarchy process(AHP) method. All of the data thus obtained were interpolated using the inverse distance weighted(IDW) interpolation method to create maps for the entire region. In this study,the analysis of habitat suitability in the subtidal zone of Xiaoheishan Island was conducted for four seasons. According to the GIS-based HSI model,the optimal habitat of Z ostera marina L. appears in spring,although habitat remains suitable all year round. On the whole,the optimum site for eelgrass restoration is located in the eastern region,followed by the western and southern regions. We believe that the GIS-based HSI model could be a promising tool to select sites for Z ostera marina L. restoration and could also be applicable in other types of habitat evaluation.展开更多
Habitat loss and fragmentation are mainly associated with population decrease of endangered species and biodiversity loss. The habitat suitability maps of red-crowned crane (Grusjaponensis) in 1992, 1999 and 2006 we...Habitat loss and fragmentation are mainly associated with population decrease of endangered species and biodiversity loss. The habitat suitability maps of red-crowned crane (Grusjaponensis) in 1992, 1999 and 2006 were produced by using Ecological Niche Suitability Model (ENSM) in Yellow River Delta Nature Reserve (118°33′-119°20′E longitude, 37°35′-38°12′N latitude), Shandong Province, China. Based on the habitat suitability maps, the causation and change law of habitat loss and fragmentation of red-crowned crane were analyzed by selecting a series of landscape pattern indices. Results showed that due to scarcities of fresh water sources, habitat suitability of red-crowned crane in 1999 was inferior to that in 1992 and 2006 no matter whether human disturbances existed or not. Besides, human disturbance activities, especially road disturbances, increased rapidly during the period of 1992-2006. This worsened the habitat loss and frag- mentation of red-crowned crane, and led to degrading habitat suitability of red-crowned crane in 2006, compared with that in 1992. In conclusion, fresh water sources and human disturbance activities are the two main factors that drive the habitat suitability change of red-crowned crane.展开更多
Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition- and senescence-related mortality of trees, and various damages. This study described a methodology for predicting the ef...Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition- and senescence-related mortality of trees, and various damages. This study described a methodology for predicting the effect of wind damage on the amount of deadwood and suitability of the forest for saproxylic species. The methodology was used in a forested boreal landscape of 360 ha to analyze the effects of wind damage on the habitat quality for 27 groups of saproxylic species differing in their requirements for the species, size and decay stage of deadwood objects. A reference plan maximized net present value (MaxNPV) while others either minimized or maximized height differences between adjacent stands. Maximization of height differences resulted in high amount of wind damage and deadwood while minimizing height differences minimized wind damage and the amount of damage-related deadwood. The fourth plan maximized the average habitat suitability index (HSI) of the 27 groups of saproxylic species. The plans were compiled with and without even-flow harvesting constraints for three 10-year periods. Maximization of height differences between adjacent stands resulted in higher HSI values than obtained in the MaxNPV plan or in the plan than minimized height differences between adjacent stands. The average HSI of shade-demanding species correlated negatively with the amount of harvested timber. No strong correlations were found for light-demanding and indifferent species.展开更多
Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recog...Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.展开更多
Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the ro...Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.展开更多
Mountainous rangelands play a pivotal role in providing forage resources for livestock, particularly in summer, and maintaining ecological balance. This study aimed to identify environmental variables affecting range ...Mountainous rangelands play a pivotal role in providing forage resources for livestock, particularly in summer, and maintaining ecological balance. This study aimed to identify environmental variables affecting range plant species distribution, ecological analysis of the relationship between these variables and the distribution of plants, and to model and map the plant habitats suitability by the Random Forest Method(RFM) in rangelands of the Taftan Mountain, Sistan and Baluchestan Province, southeastern Iran. In order to determine the environmental variables and estimate the potential distribution of plant species, the presence points of plants were recorded by using systematic random sampling method(90 points of presence) and soils were sampled in 5 habitats by random method in 0–30 and 30–60 cm depths. The layers of environmental variables were prepared using the Kriging interpolation method and Geographic Information System facilities. The distribution of the plant habitats was finally modelled and mapped by the RFM. Continuous maps of the habitat suitability were converted to binary maps using Youden Index(?) in order to evaluate the accuracy of the RFM in estimation of the distribution of species potentialhabitat. Based on the values of the area under curve(AUC) statistics, accuracy of predictive models of all habitats was in good level. Investigating the agreement between the predicted map, generated by each model, and actual maps, generated from fieldmeasured data, of the plant habitats, was at a high level for all habitats, except for Amygdalus scoparia habitat. This study concluded that the RFM is a robust model to analyze the relationships between the distribution of plant species and environmental variables as well as to prepare potential distribution maps of plant habitats that are of higher priority for conservation on the local scale in arid mountainous rangelands.展开更多
Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annua...Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annually. In this paper, through the inveingation of the grey herons nesting habitat and according to the water depth, vegetation type, cover density and plan heigh of the nesting place, the grey heron’s nesting habitat suitability index medes are established. The main model is s=(s1xs2xs3xs4)1/4,where s1 is the water depth suitability index, s2 is the vegetation type suitability index, s3 is the cover density index, sa is the plant height suitability index. These models provide a kind of reliable method for evaluating the habitat quality of the grey heron’s nesting.展开更多
In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zon...In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zonal distribution of skipjack tuna(Katsuwonus pelamis).Although causality has been suggested by researchers using physical-biological interaction models,cumulative evidence needs to be obtained and the tenability of assertion needs to be tested from an ecological habitat perspective,based on fisheries data.For purse seine fishery,the use of catch per unit effort(CPUE)as an indication of the abundance is confusing because of technical improvements over the whole exploitation history and unbalanced individual fishing characteristic of vessels.It is particularly interesting to discriminate between habitat characteristics in comparative scenarios of CPUE application.This study identified habitat traits based on a series of oceanographic factors from a global ocean reanalysis model.A comparison was conducted between two habitat models based on unprocessed purse seine CPUE and standardized CPUE considering fishing characteristics.The results suggest that standardized CPUE could model the regular zonal shift of habitat compatible with the observed fishing efforts transfer,and achieved better prediction capacity than unprocessed CPUE.Furthermore,the habitat of skipjack tuna was also characterized and linked with surface and subsurface thermal environment,ocean current,dissolved oxygen,biotic environment,and ENSO variability.The monthly-averaged habitat suitable index,derived from the optimal habitat model prediction,showed a significant linear relationship with the southern oscillation index,which suggested that El Ni?o episodes eventually provide more preferable habitat for skipjack tuna under ENSO variability.展开更多
Over the last several decades,the Mediterranean region has been subjected to mountain abandonment and farming cessation,leading to changes in vegetation and coenological features of grasslands,contextually to the stro...Over the last several decades,the Mediterranean region has been subjected to mountain abandonment and farming cessation,leading to changes in vegetation and coenological features of grasslands,contextually to the strong decline of the rock partridge(Alectoris graeca).Our hypothesis was that the ongoing dynamic processes leading to the compositional changes of grasslands in central Apennines affect the habitat suitability for the singing male(territorial male defending its reproductive site).In 2015,we defined the presence/absence of spring territorial singing males in seven sites(1,250-2,400 m a.s.l.),by the census in 74 playback stations,distributed along 15 transects.We characterized the topography and the vegetation mosaic of such sites according to the collected topographic and vegetation cover data in 59 randomly selected plots(100 m×100 m)along the transects.To understand the relations among the environmental variables and the effect of the composition and dynamism of the vegetation mosaics on the presence/absence of the singing male,we used principal components analysis and generalized linear mixed-effect modelling.Our results emphasized the marked overlap between the general environmental conditions,which proved to define the habitat suitability for A.graeca,and the characteristics of the site chosen by the singing male for starting the reproductive activities.Moreover,we found that the site suitability for the singing male decreases when the vegetation recovery processes are ongoing,because of the spread of coarse tall grassesdominated communities and/or grassland types with dense turf.Tall grass-dominated communities and thick-turf grasslands exert their negative effect decreasing the habitat suitability for the singing male starting from low cover values.Therefore,it is conceivable that singing male’s suitable habitat will be dramatically restricted to the steepest south-facing slopes,where topographic and soil conditions do not allow the spread of grasslands with dense turf and of invasive/dominant tall grasses,increasing the threat to the species due to the effect of climate change on the vegetation features.展开更多
Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwe...Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.展开更多
基金Open access funding provided by Norwegian University of Life Sciences。
文摘Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood,the limiting factor for habitats for saproxylic species in European boreal forests.The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood.We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland.We simulated seven forest management regimes and three climate scenarios(reference,RCP4.5 and RCP8.5)over 100 years.Management regimes included set aside,continuous cover forestry,business-as-usual(BAU)and four modifications of BAU.Habitat suitability was assessed using a speciesspecific habitat suitability index,including 21 fungal and invertebrate species groups.“Winner”and“loser”species were identified based on the modelled impacts of forest management and climate change on their habitat suitability.We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change.Habitat suitability index varied by over 250%among management regimes,while overall change in habitat suitability index caused by climate change was on average only 2%.More species groups were identified as winners than losers from impacts of climate change(52%–95%were winners,depending on the climate change scenario and management regime).The largest increase in habitat suitability index was achieved under set aside(254%)and the climate scenario RCP8.5(>2%),while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species(up to+11%)across all climate change scenarios.Our results show that close-to-nature management regimes(e.g.,continuous cover forestry and set aside)can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime.This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices,even as climate change progresses.
基金Supported by the National Natural Science Foundation of China (40801078)the Selfdetermined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE,China~~
文摘[Objective] This study was to overview the research progress and thoughts of habitat suitability evaluation of citrus based on ecological niche theory. [Method] The research progress on habitat suitability evaluation and ecological niche theory to the niche selection of crops were comprehensively analyzed. [Result] The research thoughts of using niche theory to evaluate the habitat suitability of citrus with quality constraint were put forward, including collection and expression of citrus ecological environment and quality factors, interactive response study of the citrus ecological environment and quality, and habitat suitability evaluation and adaptation mechanism study of citrus based on quality constraint. [Conclusion] This study provided references for the development of citrus industrialization.
基金funded primarily by the Everest Snow Leopard Conservation Center,a partnership initiative of Vanke Foundation and Qomolangma National Nature Reserve Administration
文摘Habitat evaluation constitutes an important and fundamental step in the management of wildlife populations and conservation policy planning. Geographic information system (GIS) and species presence data provide the means by which such evaluation can be done. Maximum Entropy (MaxEnt) is widely used in habitat suitability modeling due to its power of accuracy and additional descriptive properties To survey snow leopard populations in Qomolangma (Mt. Everest) National Nature Reserve (QNNR), Xizang (Tibet), China, we pooled 127 pugmarks, 415 scrape marks, and 127 non-invasive identifications of the animal along line transects and recorded 87 occurrences through camera traps from 2014-2017. We adopted the MaxEnt model to generate a map highlighting the extent of suitable snow leopard habitat in QNNR. Results showed that the accuracy of the MaxEnt model was excellent (mean AUC=0.921). Precipitation in the driest quarter, ruggedness, elevation, maximum temperature of the warmest month, and annual mean temperature were the main environmental factors influencing habitat suitability for snow leopards, with contribution rates of 20.0%, 14.4%, 13.3%, 8.7%, and 8.2% respectively The suitable habitat area extended for 7 001.93 km^2, representing 22.72% of the whole reserve. The regions bordering Nepal were the main suitable snow leopard habitats and consisted of three separate habitat patches Our findings revealed that precipitation, temperature conditions, ruggedness, and elevations of around 4 000 m a.s.I, influenced snow leopard preferences at the landscape level in QNNR. We advocate further research and cooperation with Nepal to evaluate habitat connectivity and to explore possible proxies of population isolation among these patches. Furthermore, evaluation of subdivisions within the protection zones of QNNR is necessary to improve conservation strategies and enhance protection.
基金Supported by the PhD Programs Foundation of Ministry of Education of China (No. 20093104110002)the National High Technology Research and Development Program of China (863 Program) (Nos. 2007AA092201, 2007AA092202)+2 种基金the National Natural Science Foundation (No. NSFC40876090)the Shanghai Leading Academic Discipline Project (No. S30702)Y. Chen's involvement in the project was partially supported by the Shanghai Dongfang Scholar Program
文摘The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables -- sea surface temperature (SST) and sea surface height anomaly (SSHA) -- and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike's information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based =0.5Sleffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISSHA-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.
基金supported by the National 863 project (2007AA092201 2007AA092202)+4 种基金National Development and Reform Commission Project (2060403)"Shu Guang" Project (08GG14) from Shanghai Municipal Education CommissionShanghai Leading Academic Discipline Project (Project S30702)supported by the National Distantwater Fisheries Engineering Research Center, and Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture, ChinaYong Chen’s involvement in the project was supported by the Shanghai Dongfang Scholar Program
文摘Weighting values for different habitat variables used in multi-factor habitat suitability index (HSI) modeling reflect the relative influences of different variables on distribution of fish species. Using the winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean as an example, we evaluated the impact of different weighting schemes on the HSI models based on sea surface temperature, gradient of sea surface temperature and sea surface height. We compared differences in predicted fishing effort and HSI values resulting from different weighting. The weighting for different habitat variables could greatly influence HSI modeling and should be carefully done based on their relative importance in influencing the resource spatial distribution. Weighting in a multi-factor HSI model should be further studied and optimization methods should be developed to improve forecasting squid spatial distributions.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant No.41071115)the National Science and Technology Support Program of the Ministry of Science and Technology "Twelfth Five-Year" of China (Grant No.2011BAK12B04)
文摘HabRat richness influences and even determines biological diversity. Plant habitat suitability assessment can provide technical guidance and information support for ecological restoration. Thirteen factors in three categories of terrain, meteorology and soil were chosen to build a habitat suitability assessment index framework in the Upper Reaches of the Min River, based on the local natural environment and the actual influencing factors of vegetative growth. Combined with the Analytic Hierarchy Process (AHP) and entropy method, which were used to calculate weights of indexes, habitat suitability was studied by using a multi-objective linear weighting model and geographic information systems (GIS) spatial analysis techniques. The assessment results are as follows: Altitude, soil stability, aspect and slope have more important effects on plant habitat suitability in the Upper Reaches of the Min River, and their weights are o.311, 0.260, o.198 and o.125, respectively. Suitable and sub-suitable habitats cover 4431.8o km2 and 6171.12 km2, respectively; most of which are distributed along both sides of rivers and have higher suitability. Unsuitable habitats cover the largest area (6679.76 km2), accounting for 29.83% of the whole area; and the worst unsuitable habitats are 5107.23 km2 (22.81%); they account for more than half of the study area. These results indicate that the plant habitat in the Upper Reaches of the Min River is poor and ecological restoration is both urgent and difficult. Therefore, based on the principle of taking measures suitable to the habitat in ecological restoration projects, ecological and engineering measures should be combined to have better effects, while increasing the strength of ecological protection.
基金The National Key R&D Program of China under contract No.2017YFE0104400the National Natural Science Foundation of China under contract No.31772852the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0501-2。
文摘Habitat suitability index(HSI)models have been widely used to analyze the relationship between species abundance and environmental factors,and ultimately inform management of marine species.The response of species abundance to each environmental variable is different and habitat requirements may change over life history stages and seasons.Therefore,it is necessary to determine the optimal combination of environmental variables in HSI modelling.In this study,generalized additive models(GAMs)were used to determine which environmental variables to be included in the HSI models.Significant variables were retained and weighted in the HSI model according to their relative contribution(%)to the total deviation explained by the boosted regression tree(BRT).The HSI models were applied to evaluate the habitat suitability of mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent areas in 2011 and 2013–2017.Ontogenetic and seasonal variations in HSI models of mantis shrimp were also examined.Among the four models(non-optimized model,BRT informed HSI model,GAM informed HSI model,and both BRT and GAM informed HSI model),both BRT and GAM informed HSI model showed the best performance.Four environmental variables(bottom temperature,depth,distance offshore and sediment type)were selected in the HSI models for four groups(spring-juvenile,spring-adult,falljuvenile and fall-adult)of mantis shrimp.The distribution of habitat suitability showed similar patterns between juveniles and adults,but obvious seasonal variations were observed.This study suggests that the process of optimizing environmental variables in HSI models improves the performance of HSI models,and this optimization strategy could be extended to other marine organisms to enhance the understanding of the habitat suitability of target species.
基金supported by program of international S&T Cooperation"Fined Earth Observation and Recognition of The Impact of the Global Change of on World Heritage Sites"(Grant No.2013DFG21640)Open Fund of the center for Earth observation and Digital Earth,the Chinese Academy of Sciences(Grant No.2013LDE006)
文摘Massive geological landslides and unstable landslide areas were triggered by the 2008 Wenchuan earthquake. These landslides caused deaths, damaged infrastructure and threatened endanger species. This study analyzed the impact of landslides on giant pandas and their habitats from the following aspects: threatening pandas‘ lives, damaging pandas‘ habitat, influencing giant panda behavior, increasing habitat fragmentation; the final aspect, and blocking gene flow by cutting off corridors. A habitat suitability map was created by integrating the landslide factors with other traditional factors based on a logistics regression method. According to the landslide inventory map, there are 1313 landslides, 818 rock debris flows, 117 rock avalanches and 43 mud flows occurred in the study area. A correlation analysis indicated that landslides caused the pandas to migrate, and the core landslides within 1 km2 had greater influence on panda migration. These core landslides primarily occurred in mid-altitude regionscharacterized by high slopes, old geological ages, large areas and large rock mass volumes. The habitat suitability assessment results for the Wolong Natural Reserve had better prediction performance(80.9%) and demonstrated that 14.5%, 15.9%, 20.5%, 47.6% and 1.5% of the study area can be classified as very high, high, moderate, low and very low giant panda suitability areas, respectively. This study can be used to inform panda and panda habitat research, management and protection during post-quake reconstruction and recovery periods in China.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB 31000000)the National Natural Science Foundation of China (Nos.32070253 and 32100186)the Sino-Africa Joint Research Center (No. SAJC201322)
文摘Understanding the influence of environmental covariates on plant distribution is critical,especially for aquatic plant species.Climate change is likely to alter the distribution of aquatic species.However,knowledge of this change on the burden of aquatic macroorganisms is often fraught with difficulty.Ottelia,a model genus for studying the evolution of the aquatic family Hydrocharitaceae,is mainly distributed in slow-flowing creeks,rivers,or lakes throughout pantropical regions in the world.Due to recent rapid climate changes,natural Ottelia populations have declined significantly.By modeling the effects of climate change on the distribution of Ottelia species and assessing the degree of niche similarity,we sought to identify high suitability regions and help formulate conservation strategies.The models use known background points to determine how environmental covariates vary spatially and produce continental maps of the distribution of the Ottelia species in Africa.Additionally,we estimated the possible influences of the optimistic and extreme pessimistic representative concentration pathways scenarios RCP 4.5 and RCP 8.5 for the 2050s.Our results show that the distinct distribution patterns of studied Ottelia species were influenced by topography(elevation)and climate(e.g.,mean temperature of driest quarter,annual precipitation,and precipitation of the driest month).While there is a lack of accord in defining the limiting factors for the distribution of Ottelia species,it is clear that water-temperature conditions have promising effects when kept within optimal ranges.We also note that climate change will impact Ottelia by accelerating fragmentation and habitat loss.The assessment of niche overlap revealed that Ottelia cylindrica and O.verdickii had slightly more similar niches than the other Ottelia species.The present findings identify the need to enhance conservation efforts to safeguard natural Ottelia populations and provide a theoretical basis for the distribution of various Ottelia species in Africa.
基金The National Natural Science Foundation of China under contract No.41206102the Program of the Key Laboratory of Marine Ecology and Environmental Science and Engineering,State Oceanic Administration under contract No.MESE-2013-01
文摘The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic information system framework. The seven input variables of the HSI model were sediment composition, water temperature, salinity, dissolved oxygen, water depth, p H, and ammonia. A non-linear suitability function for each variable factor was used to transform the value into a normalized quality index ranging from 0(nonsuitability) to 1(best suitability). In present study, the analysis of habitat suitability was conducted for four seasons respectively. The majority of the study area has a high HSI value(>0.6) year round, which implies a strong suitability for restoration, with the optimal habitat located on the eastern side of the island.Correspondence analysis indicated that water temperature was the main factor causing seasonal variation,while sediment composition and water depth were the two major reasons for the differences in sites. The results of this work could provide support for restoration decision making through identification of potential sites for sustainable establishment of S. subcrenata.
基金Supported by the Key Laboratory of Marine Ecology and Environmental Science and Engineering,SOA(No.MESE-2013-01)the National Natural Science Foundation of China(No.41206102)the National Marine Public Welfare Research Project(No.201305009)
文摘We present a GIS-based habitat suitability index(HSI) model to identify suitable areas for Zostera marina L. restoration in the subtidal zone of Xiaoheishan Island. The controlling factors in the model,in order of importance,are Secchi depth,sediment composition,water temperature,salinity,current velocity,water depth and nutrient quality. Specific factor piecewise functions have been used to transform parameter values into normalized quality indexes. The weight of each factor was defined using expert knowledge and the analytic hierarchy process(AHP) method. All of the data thus obtained were interpolated using the inverse distance weighted(IDW) interpolation method to create maps for the entire region. In this study,the analysis of habitat suitability in the subtidal zone of Xiaoheishan Island was conducted for four seasons. According to the GIS-based HSI model,the optimal habitat of Z ostera marina L. appears in spring,although habitat remains suitable all year round. On the whole,the optimum site for eelgrass restoration is located in the eastern region,followed by the western and southern regions. We believe that the GIS-based HSI model could be a promising tool to select sites for Z ostera marina L. restoration and could also be applicable in other types of habitat evaluation.
基金the research was supported by National Natural Science Foundation (No. 40771172)Knowledge innovation project of the Chinese Academy of Sciences (No. kzcx2-yw-308)
文摘Habitat loss and fragmentation are mainly associated with population decrease of endangered species and biodiversity loss. The habitat suitability maps of red-crowned crane (Grusjaponensis) in 1992, 1999 and 2006 were produced by using Ecological Niche Suitability Model (ENSM) in Yellow River Delta Nature Reserve (118°33′-119°20′E longitude, 37°35′-38°12′N latitude), Shandong Province, China. Based on the habitat suitability maps, the causation and change law of habitat loss and fragmentation of red-crowned crane were analyzed by selecting a series of landscape pattern indices. Results showed that due to scarcities of fresh water sources, habitat suitability of red-crowned crane in 1999 was inferior to that in 1992 and 2006 no matter whether human disturbances existed or not. Besides, human disturbance activities, especially road disturbances, increased rapidly during the period of 1992-2006. This worsened the habitat loss and frag- mentation of red-crowned crane, and led to degrading habitat suitability of red-crowned crane in 2006, compared with that in 1992. In conclusion, fresh water sources and human disturbance activities are the two main factors that drive the habitat suitability change of red-crowned crane.
基金funded by the UEF foundation(Project 930341)the University of Eastern Finlandsupported by the FORBIO project(Decision Number 293380)funded by the Strategic Research Council of the Academy of Finland,led by Prof.Heli Peltola at University of Eastern Finland
文摘Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition- and senescence-related mortality of trees, and various damages. This study described a methodology for predicting the effect of wind damage on the amount of deadwood and suitability of the forest for saproxylic species. The methodology was used in a forested boreal landscape of 360 ha to analyze the effects of wind damage on the habitat quality for 27 groups of saproxylic species differing in their requirements for the species, size and decay stage of deadwood objects. A reference plan maximized net present value (MaxNPV) while others either minimized or maximized height differences between adjacent stands. Maximization of height differences resulted in high amount of wind damage and deadwood while minimizing height differences minimized wind damage and the amount of damage-related deadwood. The fourth plan maximized the average habitat suitability index (HSI) of the 27 groups of saproxylic species. The plans were compiled with and without even-flow harvesting constraints for three 10-year periods. Maximization of height differences between adjacent stands resulted in higher HSI values than obtained in the MaxNPV plan or in the plan than minimized height differences between adjacent stands. The average HSI of shade-demanding species correlated negatively with the amount of harvested timber. No strong correlations were found for light-demanding and indifferent species.
基金Razi University(Kermanshah-Iran) authorities for the financial support during the field work
文摘Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.
基金funded by National High Technology Research and Development Program of China (863 Program,2012AA092303)Project of Shanghai Science and Technology Innovation (12231203900)+2 种基金Industrialization Program of National Development and Reform Commission (2159999)National Science and Technology Support Program (2013BAD13B01)Shanghai Leading Academic Discipline Project
文摘Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.
基金funded by University of Zabol,Iran(Grant No.UOZ-GR-9517-24)the Vice Chancellery for Research and Technology,University of Zabol,for funding this study
文摘Mountainous rangelands play a pivotal role in providing forage resources for livestock, particularly in summer, and maintaining ecological balance. This study aimed to identify environmental variables affecting range plant species distribution, ecological analysis of the relationship between these variables and the distribution of plants, and to model and map the plant habitats suitability by the Random Forest Method(RFM) in rangelands of the Taftan Mountain, Sistan and Baluchestan Province, southeastern Iran. In order to determine the environmental variables and estimate the potential distribution of plant species, the presence points of plants were recorded by using systematic random sampling method(90 points of presence) and soils were sampled in 5 habitats by random method in 0–30 and 30–60 cm depths. The layers of environmental variables were prepared using the Kriging interpolation method and Geographic Information System facilities. The distribution of the plant habitats was finally modelled and mapped by the RFM. Continuous maps of the habitat suitability were converted to binary maps using Youden Index(?) in order to evaluate the accuracy of the RFM in estimation of the distribution of species potentialhabitat. Based on the values of the area under curve(AUC) statistics, accuracy of predictive models of all habitats was in good level. Investigating the agreement between the predicted map, generated by each model, and actual maps, generated from fieldmeasured data, of the plant habitats, was at a high level for all habitats, except for Amygdalus scoparia habitat. This study concluded that the RFM is a robust model to analyze the relationships between the distribution of plant species and environmental variables as well as to prepare potential distribution maps of plant habitats that are of higher priority for conservation on the local scale in arid mountainous rangelands.
文摘Grey heron (Ardea cimerca) is one kind of the great birds which are often seen in the northeast marsh area of P.R.China, and there are many grey herons to reproduce in Zhalong Nature Reserve from March to August annually. In this paper, through the inveingation of the grey herons nesting habitat and according to the water depth, vegetation type, cover density and plan heigh of the nesting place, the grey heron’s nesting habitat suitability index medes are established. The main model is s=(s1xs2xs3xs4)1/4,where s1 is the water depth suitability index, s2 is the vegetation type suitability index, s3 is the cover density index, sa is the plant height suitability index. These models provide a kind of reliable method for evaluating the habitat quality of the grey heron’s nesting.
基金The National Key R&D Program of China under contract Nos 2020YFD0901202 and 2019YFD0901502the National Natural Science Foundation of China under contract Nos 41806110,41506151 and 31902426。
文摘In the western and central Pacific Ocean,upper strata waters exhibit highly dynamic oceanographic features under ENSO variability.This has been proved to be responsible for the dynamic change of both abundance and zonal distribution of skipjack tuna(Katsuwonus pelamis).Although causality has been suggested by researchers using physical-biological interaction models,cumulative evidence needs to be obtained and the tenability of assertion needs to be tested from an ecological habitat perspective,based on fisheries data.For purse seine fishery,the use of catch per unit effort(CPUE)as an indication of the abundance is confusing because of technical improvements over the whole exploitation history and unbalanced individual fishing characteristic of vessels.It is particularly interesting to discriminate between habitat characteristics in comparative scenarios of CPUE application.This study identified habitat traits based on a series of oceanographic factors from a global ocean reanalysis model.A comparison was conducted between two habitat models based on unprocessed purse seine CPUE and standardized CPUE considering fishing characteristics.The results suggest that standardized CPUE could model the regular zonal shift of habitat compatible with the observed fishing efforts transfer,and achieved better prediction capacity than unprocessed CPUE.Furthermore,the habitat of skipjack tuna was also characterized and linked with surface and subsurface thermal environment,ocean current,dissolved oxygen,biotic environment,and ENSO variability.The monthly-averaged habitat suitable index,derived from the optimal habitat model prediction,showed a significant linear relationship with the southern oscillation index,which suggested that El Ni?o episodes eventually provide more preferable habitat for skipjack tuna under ENSO variability.
基金the Monti Sibillini National Park for having funded this research, within the project “Censimento della coturnice (Alectoris graeca orlandoi) nel Parco Nazionale dei Monti Sibillini”
文摘Over the last several decades,the Mediterranean region has been subjected to mountain abandonment and farming cessation,leading to changes in vegetation and coenological features of grasslands,contextually to the strong decline of the rock partridge(Alectoris graeca).Our hypothesis was that the ongoing dynamic processes leading to the compositional changes of grasslands in central Apennines affect the habitat suitability for the singing male(territorial male defending its reproductive site).In 2015,we defined the presence/absence of spring territorial singing males in seven sites(1,250-2,400 m a.s.l.),by the census in 74 playback stations,distributed along 15 transects.We characterized the topography and the vegetation mosaic of such sites according to the collected topographic and vegetation cover data in 59 randomly selected plots(100 m×100 m)along the transects.To understand the relations among the environmental variables and the effect of the composition and dynamism of the vegetation mosaics on the presence/absence of the singing male,we used principal components analysis and generalized linear mixed-effect modelling.Our results emphasized the marked overlap between the general environmental conditions,which proved to define the habitat suitability for A.graeca,and the characteristics of the site chosen by the singing male for starting the reproductive activities.Moreover,we found that the site suitability for the singing male decreases when the vegetation recovery processes are ongoing,because of the spread of coarse tall grassesdominated communities and/or grassland types with dense turf.Tall grass-dominated communities and thick-turf grasslands exert their negative effect decreasing the habitat suitability for the singing male starting from low cover values.Therefore,it is conceivable that singing male’s suitable habitat will be dramatically restricted to the steepest south-facing slopes,where topographic and soil conditions do not allow the spread of grasslands with dense turf and of invasive/dominant tall grasses,increasing the threat to the species due to the effect of climate change on the vegetation features.
基金The National Natural Science Foundation of China under contract No.31902375the David and Lucile Packard Foundation+1 种基金the Innovation Team of Fishery Resources and Ecology in the Yellow Sea and Bohai Sea under contract No.2020TD01the Special Funds for Taishan Scholars Project of Shandong Province。
文摘Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.