By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Base...By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear li...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.展开更多
An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influ...An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on展开更多
This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stre...This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.展开更多
This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear ...This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its face...Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results.展开更多
The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surfa...The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.展开更多
This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subj...This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.展开更多
基金Project supported by the National Natural Science Foundation of China (No.50538010) the Doctoral Education of the State Education Ministry of China (No.20040335083) Encouragement Fund for Young Teachers in University of Ministry of Education.
文摘By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.
基金The project supported by the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.
基金Project supported by the National Natural Science Foundation of China (No.50578008)
文摘An analytical method was derived for the thermal consolidation of layered, saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, the the thermal responses. effect has an obvious influence on
文摘This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.
文摘This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
基金The project supported by the Guangdong Provincial Natural Science Foundationthe Science Foundation of Shantou University
文摘Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results.
文摘The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.
基金the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.
基金the National Natural Science Foundation of China under Grant Nos.51178338 and 51478346State Key Laboratory of Disaster Reduction in Civil Engineering under Grant No.SLDRCE14-B-16
文摘This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.