High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
A 16bit sigma-delta audio analog-to-digital converter is developed.It consists of an analog modulator and a digital decimator.A standard 2-order single-loop architecture is employed in the modulator.Chopper stabilizat...A 16bit sigma-delta audio analog-to-digital converter is developed.It consists of an analog modulator and a digital decimator.A standard 2-order single-loop architecture is employed in the modulator.Chopper stabilization is applied to the first integrator to eliminate the 1/f noise.A low-power,area-efficient decimator is used,which includes a poly-phase comb-filter and a wave-digital-filter.The converter achieves a 92dB dynamic range over the 96kHz audio band.This single chip occupies 2.68mm2 in a 0.18μm six-metal CMOS process and dissipates only 15.5mW power.展开更多
Rotor chopper control is a simple and effective drive method for induction motor. This paper presents a novel IGBT chopper topology,which can both adjust rotor resistance and protect IGBT efficiently. Investigation on...Rotor chopper control is a simple and effective drive method for induction motor. This paper presents a novel IGBT chopper topology,which can both adjust rotor resistance and protect IGBT efficiently. Investigation on the quasi transient state of the rotor rectifying circuit is made, and a nonlinear mapping between the equivalent resistance and the duty cycle is deduced. Furthermore, the method for determining the magnitude of the external resistor is introduced.展开更多
This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electron...This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electronic readout circuit,which is a silicon nanowire and a Continuous-Time(CT)△∑ADC.The first integrator of the△∑ADC is based on a positive feedback DC-gain enhancement two-stage amplifier due to its high linearity and low-noise operations.To mitigate both the offset and 1/f noise,a suggested delay-time chopper negative-R stabilization technique is applied around the first integrator.A 65-nm CMOS process implements the CT△∑ADC.The supply voltage of the CMOS circuit is 1.2-V while 0.96-mW is the power consumption and 0.1-mm^(2) is the silicon area.The M&NEMS microphone and△∑ADC complete circuit are fabricated and measured.Over a working frequency bandwidth of 20-kHz,the measurement results of the proposed IoT system reach a signal to noise ratio(SNR)of 102.8-dB.Moreover,it has a measured dynamic range(DR)of 108-dB and a measured signal to noise and distortion ratio(SNDR)of 101.3-dB.展开更多
In this study, we investigate the performance of a boost converter regulating its output voltage using two control methods: Proportional-Integral (PI) control and neural control. Both methods are implemented on a simu...In this study, we investigate the performance of a boost converter regulating its output voltage using two control methods: Proportional-Integral (PI) control and neural control. Both methods are implemented on a simulation platform (Matlab/Simulink) and evaluated in terms of accuracy, response speed, and robustness to disturbances. Indeed, the output voltage of converters exhibits imperfections that require a control method to optimize efficiency when applying a variable load. Results show that neural control offers superior performance in terms of accuracy and response time, with faster and more precise regulation of the output voltage. On the other hand, PI control proves to be more robust against disturbances. These findings can help guide the selection of the appropriate control method for a boost converter based on the specific requirements of each application.展开更多
An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the ...An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.展开更多
In this paper, the behavior analysis of two cells chopper connected to a nonlinear load is reported. Thus, this is done in order to highlight the way to chaos. Furthermore, throughout the study of these dynamical beha...In this paper, the behavior analysis of two cells chopper connected to a nonlinear load is reported. Thus, this is done in order to highlight the way to chaos. Furthermore, throughout the study of these dynamical behaviors of this complex switched system some basic dynamical properties, such as Poincare section, first return map, bifurcation diagram, power spectrum, and strange attractor are investigated. The system examined in Matlab-Simulink. Analyses of simulation results show that this system has complex dynamics with some interesting characteristics.展开更多
In orthopaedic surgeries, permanent magnet DC motors are used to drill the bone and fix the screws. The Motor drive employs an inner current and outer speed control loop with a conventional or modern controller. To en...In orthopaedic surgeries, permanent magnet DC motors are used to drill the bone and fix the screws. The Motor drive employs an inner current and outer speed control loop with a conventional or modern controller. To enhance the performance of the drive, this paper proposes a Brain Emotional Logic Based Intelligent Controller based chopper drive. The proposed drive scheme has been simulated using Matlab/Simulink and physically realized for validation. A comparative analysis has been made between the conventional PI controller based drive and the proposed system in order to prove that the proposed scheme has an edge over the traditional PI controller scheme counterpart.展开更多
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
文摘A 16bit sigma-delta audio analog-to-digital converter is developed.It consists of an analog modulator and a digital decimator.A standard 2-order single-loop architecture is employed in the modulator.Chopper stabilization is applied to the first integrator to eliminate the 1/f noise.A low-power,area-efficient decimator is used,which includes a poly-phase comb-filter and a wave-digital-filter.The converter achieves a 92dB dynamic range over the 96kHz audio band.This single chip occupies 2.68mm2 in a 0.18μm six-metal CMOS process and dissipates only 15.5mW power.
文摘Rotor chopper control is a simple and effective drive method for induction motor. This paper presents a novel IGBT chopper topology,which can both adjust rotor resistance and protect IGBT efficiently. Investigation on the quasi transient state of the rotor rectifying circuit is made, and a nonlinear mapping between the equivalent resistance and the duty cycle is deduced. Furthermore, the method for determining the magnitude of the external resistor is introduced.
文摘This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electronic readout circuit,which is a silicon nanowire and a Continuous-Time(CT)△∑ADC.The first integrator of the△∑ADC is based on a positive feedback DC-gain enhancement two-stage amplifier due to its high linearity and low-noise operations.To mitigate both the offset and 1/f noise,a suggested delay-time chopper negative-R stabilization technique is applied around the first integrator.A 65-nm CMOS process implements the CT△∑ADC.The supply voltage of the CMOS circuit is 1.2-V while 0.96-mW is the power consumption and 0.1-mm^(2) is the silicon area.The M&NEMS microphone and△∑ADC complete circuit are fabricated and measured.Over a working frequency bandwidth of 20-kHz,the measurement results of the proposed IoT system reach a signal to noise ratio(SNR)of 102.8-dB.Moreover,it has a measured dynamic range(DR)of 108-dB and a measured signal to noise and distortion ratio(SNDR)of 101.3-dB.
文摘In this study, we investigate the performance of a boost converter regulating its output voltage using two control methods: Proportional-Integral (PI) control and neural control. Both methods are implemented on a simulation platform (Matlab/Simulink) and evaluated in terms of accuracy, response speed, and robustness to disturbances. Indeed, the output voltage of converters exhibits imperfections that require a control method to optimize efficiency when applying a variable load. Results show that neural control offers superior performance in terms of accuracy and response time, with faster and more precise regulation of the output voltage. On the other hand, PI control proves to be more robust against disturbances. These findings can help guide the selection of the appropriate control method for a boost converter based on the specific requirements of each application.
文摘An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.
文摘In this paper, the behavior analysis of two cells chopper connected to a nonlinear load is reported. Thus, this is done in order to highlight the way to chaos. Furthermore, throughout the study of these dynamical behaviors of this complex switched system some basic dynamical properties, such as Poincare section, first return map, bifurcation diagram, power spectrum, and strange attractor are investigated. The system examined in Matlab-Simulink. Analyses of simulation results show that this system has complex dynamics with some interesting characteristics.
文摘In orthopaedic surgeries, permanent magnet DC motors are used to drill the bone and fix the screws. The Motor drive employs an inner current and outer speed control loop with a conventional or modern controller. To enhance the performance of the drive, this paper proposes a Brain Emotional Logic Based Intelligent Controller based chopper drive. The proposed drive scheme has been simulated using Matlab/Simulink and physically realized for validation. A comparative analysis has been made between the conventional PI controller based drive and the proposed system in order to prove that the proposed scheme has an edge over the traditional PI controller scheme counterpart.