Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which d...Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the...We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.展开更多
The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear ...The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.展开更多
A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric fie...A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, A1 component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.展开更多
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation en...With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory(QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay(amplify) with raising temperature in the regime of lower(higher)temperature. They are decreasing functions of Coulomb impurity potential strength.展开更多
The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states ...The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.展开更多
A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/s...A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.展开更多
Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuc...Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11〉 with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect.展开更多
The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effectiv...The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.展开更多
Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by th...Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.展开更多
A simple equation of state (EOS) in wide ranges of pressure and temperature is constructed within the MieGruneisen Debye framework. Instead of the popular Birch-Murnaghan and Vinet EOS, we employ a five-parameter co...A simple equation of state (EOS) in wide ranges of pressure and temperature is constructed within the MieGruneisen Debye framework. Instead of the popular Birch-Murnaghan and Vinet EOS, we employ a five-parameter cold energy expression to represent the static EOS term, which can correctly produce cohesive energy without any spurious oscillations in the extreme compression and expansion regions, We developed a Pade approximation-based analytic Debye quasiharmonic model with high accuracy which improves the performance of EOS in the low temperature region. The anharmonic effect is taken into account by using a semi-empirical approach. Its reasonability is verified by the fact that the total thermal pressure tends to the lowest-order anharmonic expansion in the literature at low temperature, and tends to ideal-gas limitation at high temperature, which is physically correct. Besides, based on this approach, the anharmonic thermal pressure can be expressed in the Griineisen form, which is convenient for applications. The proposed EOS is used to study the thermodynamic properties of MgO including static and shock compression conditions, and the results are very satisfactory as compared with the experimental data.展开更多
The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin-...The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.展开更多
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) e...For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.展开更多
After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitti...After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.展开更多
Bound states, such as qq and q^-q, may exist the volume of the bound states may evoke a reduction in investigate qualitatively the volume effect on the properties states start to be completely melted.
Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d a...Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d at superhigh pressure and high temperature(HP-HT) are reported in this paper.展开更多
Quantum Zeno effect with mixed initial state is studied here. Frequent projective measurements performed on a bipartite joint pure state system will result in the quantum Zeno effect on the subsystem of interest. This...Quantum Zeno effect with mixed initial state is studied here. Frequent projective measurements performed on a bipartite joint pure state system will result in the quantum Zeno effect on the subsystem of interest. This shows the existence of Quantum Zeno effect in the system with mixed initial states.展开更多
The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the sign...The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the significant enhancement of terahertz(THz)PSHE by taking advantage of the optical Tamm state(OTS)in In Sb-distributed Bragg reflector(DBR)structure.The spin shift of reflected light can be dynamically tuned by the structural parameters(e.g.the thickness)of the InSb-DBR structure as well as the temperature,and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm.Moreover,we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×10^(4)mm/RIU and good stability.This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on In Sb-supported THz long-range surface plasmon resonance.These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.展开更多
基金supported by the National Natural Science Foundation of China[Grant Nos.51938011 and 51908405]Australian Research Council。
文摘Adopting the classical theory of hydrocodes,the constitutive relations of concretes are separated into an equation of state(EoS)which describes the volumetric behavior of concrete material and a strength model which depicts the shear properties of concrete.The experiments on the EoS of concrete is always challenging due to the technical difficulties and equipment limitations,especially for the specimen size effect on the EoS.Although some researchers investigate the shock properties of concretes by fly-plate impact tests,the specimens used in their tests are usually in one size.In this paper,the fly-plate impact tests on concrete specimens with different sizes are performed to investigate the size effect on the shock properties of concrete materials.The mechanical background of the size effect on the shock properties are revealed,which is related to the lateral rarefaction effect and the deviatoric stress produced in the specimen.According to the tests results,the modified EoS considering the size effect on the shock properties of concrete are proposed,which the bulk modulus of concrete is unpredicted by up to 20% if size effects are not accounted for.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62275271,12272407,and 62275269)the National Key Research and Development Program of China (Grant No.2022YFF0706005)+1 种基金the Natural Science Foundation of Hunan Province,China (Grant Nos.2023JJ40683,2022JJ40552,and 2020JJ5646)the Program for New Century Excellent Talents in University,China (Grant No.NCET-12-0142)。
文摘We explore the behaviors of optically coupled topological corner states in supercell arrays composed of photonic crystal rods,where each supercell is a second-order topological insulator.Our findings indicate that the coupled corner states possess nondegenerate eigenfrequencies at theΓpoint,with coupled dipole corner states excited resonantly by incident plane waves and displaying a polarization-independent characteristic.The resonance properties of coupled dipole corner states can be effectively modulated via evanescently near-field coupling,while multipole decomposition shows that they are primarily dominated by electric quadrupole moment and magnetic dipole moment.Furthermore,we demonstrate that these coupled corner states can form surface lattice resonances driven by diffractively far-field coupling,leading to a dramatic increase in the quality factor.This work introduces more optical approaches to tailoring photonic topological states,and holds potential applications in mid-infrared topological micro-nano devices.
基金Project(LSL-1310)supported by the Open Project of State Key Laboratory of Solid Lubrication,ChinaProjects(2014QN013,2015GJB004)supported by the Research Foundation of Henan University of Science and Technology,China
文摘The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.
基金Project supported by the National Natural Science Foundation of China (Grant No 60566002)
文摘A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, A1 component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11464033)
文摘With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory(QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay(amplify) with raising temperature in the regime of lower(higher)temperature. They are decreasing functions of Coulomb impurity potential strength.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.60478029,10575040,10634060,and 90503010the National Fundamental Research Program of China under Grant No.2005CB724508
文摘The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.
基金Projects(41172276,51279155)supported by the National Natural Science Foundation of ChinaProjects(106-00X101,106-5X1205)supported by the Central Financial Funds for the Development of Characteristic Key Disciplines in Local University,China
文摘A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103, 10574143 and 10874206)the National Key Basic Research Program of China (Grant No 2006CB921203)
文摘Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11〉 with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376096,61327813,and 11234007)
文摘The dependences of Fermi-level pinning on interface state densities for the metal-dielectric, ploycrystalline silicon-dielectric, and metal silicide-dielectric interfaces are investigated by calculating their effective work functions and their pinning factors. The Fermi-level pinning factors and effective work functions of the metal-dielectric interface are observed to be more susceptible to the increasing interface state densities, differing significantly from that of the ploycrystalline silicon-dielectric interface and the metal silicide-dielectric interface. The calculation results indicate that metal silicide gates with high-temperature resistance and low resistivity are a more promising choice for the design of gate materials in metal-oxide semiconductor(MOS) technology.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832902)the National Natural Science Foundation of China(Grant Nos.11275241,11205225,11105192,and 11275238)
文摘Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe^20+ are measured and compared with different binary- encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.
基金Project supported by the Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(Grant No. 10876008)
文摘A simple equation of state (EOS) in wide ranges of pressure and temperature is constructed within the MieGruneisen Debye framework. Instead of the popular Birch-Murnaghan and Vinet EOS, we employ a five-parameter cold energy expression to represent the static EOS term, which can correctly produce cohesive energy without any spurious oscillations in the extreme compression and expansion regions, We developed a Pade approximation-based analytic Debye quasiharmonic model with high accuracy which improves the performance of EOS in the low temperature region. The anharmonic effect is taken into account by using a semi-empirical approach. Its reasonability is verified by the fact that the total thermal pressure tends to the lowest-order anharmonic expansion in the literature at low temperature, and tends to ideal-gas limitation at high temperature, which is physically correct. Besides, based on this approach, the anharmonic thermal pressure can be expressed in the Griineisen form, which is convenient for applications. The proposed EOS is used to study the thermodynamic properties of MgO including static and shock compression conditions, and the results are very satisfactory as compared with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of the Higher Education of China(Grant No.20134208110001)
文摘For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60976068 and 60936005)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 78083)
文摘After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 90103019 and 10428510.We thank professor Yu-Xin Liu for useful discussions,
文摘Bound states, such as qq and q^-q, may exist the volume of the bound states may evoke a reduction in investigate qualitatively the volume effect on the properties states start to be completely melted.
文摘Experimental and theoretical researches on the doping effect of interface binding state with homologous and heterogeneous dopants(d) in the system of PCD etc,as well as the action of intermediate layers between D /d at superhigh pressure and high temperature(HP-HT) are reported in this paper.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10704001, 61073048, and 11005029the Key Project of Chinese Ministry of Education under Grant No. 210092+2 种基金the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2008A28ZC, 2010SQRL153ZD, and KJ2010A287the "211" Project of Anhui University, the Personnel Department of Anhui ProvinceAnhui Key Laboratory of Information Materials and Devices Anhui University
文摘Quantum Zeno effect with mixed initial state is studied here. Frequent projective measurements performed on a bipartite joint pure state system will result in the quantum Zeno effect on the subsystem of interest. This shows the existence of Quantum Zeno effect in the system with mixed initial states.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175107 and 12004194)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY220030)
文摘The photonic spin Hall effect(PSHE),characterized by two splitting beams with opposite spins,has great potential applications in nano-photonic devices,optical sensing fields,and precision metrology.We present the significant enhancement of terahertz(THz)PSHE by taking advantage of the optical Tamm state(OTS)in In Sb-distributed Bragg reflector(DBR)structure.The spin shift of reflected light can be dynamically tuned by the structural parameters(e.g.the thickness)of the InSb-DBR structure as well as the temperature,and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm.Moreover,we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×10^(4)mm/RIU and good stability.This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on In Sb-supported THz long-range surface plasmon resonance.These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.