We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the b...We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the boundary are arbityary for nonhomogeneous half-plane problems with the Young’s modulus E(x)-E_0θxp[βx].accurate solutions are obtained At last with the degeneracy it is obtained that thefamous Boussnesq solution and this method is successful.展开更多
The problems of equilibrium of an elastic half-plane with loads on some intervals of the boundary and zero displacements on its other parts are discussed. The solutions of such problems are expressed in terms of integ...The problems of equilibrium of an elastic half-plane with loads on some intervals of the boundary and zero displacements on its other parts are discussed. The solutions of such problems are expressed in terms of integrals by reducing them to Riemann boundary value problems. The analytic expressions of the solutions are obtained in cases of uniform loads. In particular, the solution is written in detail for the important case when uniform pressure is given on a single interval or two equal intervals.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residu...In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.展开更多
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In ...Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.展开更多
The behavior of the stress intensity factor at the tips of cracks subjected to uniaxial tension σχ^∞= p with traction-free boundary condition in half-plane elasticity is investigated. The problem is formulated into...The behavior of the stress intensity factor at the tips of cracks subjected to uniaxial tension σχ^∞= p with traction-free boundary condition in half-plane elasticity is investigated. The problem is formulated into singular integral equations with the distribution dislocation function as unknown. In the formulation, we make used of a modified complex potential. Based on the appropriate quadrature formulas together with a suitable choice of collocation points, the singular integral equations are reduced to a system of linear equations for the unknown coefficients. Numerical examples show that the values of the stress intensity factor are influenced by the distance from the cracks to the boundary of the half-plane and the configuration of the cracks.展开更多
An analytical scheme, which avoids using the standard Gaussian approximate quadrature to treat the boundary integrals in direct boundary element method (DBEM) of two-dimensional potential and elastic problems, is esta...An analytical scheme, which avoids using the standard Gaussian approximate quadrature to treat the boundary integrals in direct boundary element method (DBEM) of two-dimensional potential and elastic problems, is established. With some numerical results, it is shown that the better precision and high computational efficiency, especially in the band of the domain near boundary, can be derived by the present scheme.展开更多
The traditional semi-inverse solution method of the Saint Venant problem, which is described in the Euclidian space under the Lagrangian system formulation, is updated to be solved in the symplectic space under the co...The traditional semi-inverse solution method of the Saint Venant problem, which is described in the Euclidian space under the Lagrangian system formulation, is updated to be solved in the symplectic space under the conservative hamiltonian system. It was proved in the present paper that all the Saint Venant solutions can be obtained directly via the zero eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian operator matrix.展开更多
In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also con...In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.展开更多
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body...In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.展开更多
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial diffe...This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.展开更多
In this paper, the equations of motion and all boundary conditions as well as the energy equation for non_local asymmetric elasticity are derived together from the complete principles of virtual work and virtual power...In this paper, the equations of motion and all boundary conditions as well as the energy equation for non_local asymmetric elasticity are derived together from the complete principles of virtual work and virtual power as well as the generalized Piola theorem. Adding the boundary conditions presented here to the results by Gao Jian and Dai Tianmin,the mixed boundary_value problem of the non_local asymmetric linear elasticity are formulated.展开更多
The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In t...The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues. The latter group can be further divided into α-and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In compar...In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.展开更多
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination ...This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.展开更多
In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the h...In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.展开更多
In the use of finite element methods to the planar elasticity problems,one diffculty is to overcome locking when elasticity constant λ→∞.In the case of traction boundary condition,another diffculty is to make the d...In the use of finite element methods to the planar elasticity problems,one diffculty is to overcome locking when elasticity constant λ→∞.In the case of traction boundary condition,another diffculty is to make the discrete Korn's second inequality valid.In this paper,a triangular element is presented.We prove that this element is locking-free,the discrete Korn's second inequality holds and the convergence order is two.展开更多
文摘We employ fundamental equations of non-homogeneous elasticity and Fourierintegral transformations to obtain the general solutions of the stress function.On thebasis of these points of view and when the forces on the boundary are arbityary for nonhomogeneous half-plane problems with the Young’s modulus E(x)-E_0θxp[βx].accurate solutions are obtained At last with the degeneracy it is obtained that thefamous Boussnesq solution and this method is successful.
文摘The problems of equilibrium of an elastic half-plane with loads on some intervals of the boundary and zero displacements on its other parts are discussed. The solutions of such problems are expressed in terms of integrals by reducing them to Riemann boundary value problems. The analytic expressions of the solutions are obtained in cases of uniform loads. In particular, the solution is written in detail for the important case when uniform pressure is given on a single interval or two equal intervals.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
基金supported by the National Natural Science Foundation of China under Grant No.10562002the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002+1 种基金the Natural Science Foundation of Inner Mongolia under Grant No.200508010103the Inner Mongolia University Scientific Research Starting Foundation for Talented Scholars under Grant No.207066
文摘In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
基金Project supported by the National Natural Science Foundation of China (Nos.10372016 and 10672022)
文摘Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students.
文摘The behavior of the stress intensity factor at the tips of cracks subjected to uniaxial tension σχ^∞= p with traction-free boundary condition in half-plane elasticity is investigated. The problem is formulated into singular integral equations with the distribution dislocation function as unknown. In the formulation, we make used of a modified complex potential. Based on the appropriate quadrature formulas together with a suitable choice of collocation points, the singular integral equations are reduced to a system of linear equations for the unknown coefficients. Numerical examples show that the values of the stress intensity factor are influenced by the distance from the cracks to the boundary of the half-plane and the configuration of the cracks.
文摘An analytical scheme, which avoids using the standard Gaussian approximate quadrature to treat the boundary integrals in direct boundary element method (DBEM) of two-dimensional potential and elastic problems, is established. With some numerical results, it is shown that the better precision and high computational efficiency, especially in the band of the domain near boundary, can be derived by the present scheme.
文摘The traditional semi-inverse solution method of the Saint Venant problem, which is described in the Euclidian space under the Lagrangian system formulation, is updated to be solved in the symplectic space under the conservative hamiltonian system. It was proved in the present paper that all the Saint Venant solutions can be obtained directly via the zero eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian operator matrix.
文摘In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.
基金supported by the US ARO grants 49308-MA and 56349-MAthe US AFSOR grant FA9550-06-1-024+1 种基金he US NSF grant DMS-0911434the State Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences during a visit by Z.Li between July-August,2008.
文摘In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence.
基金Project supported by the National Natural Science Foundation of China (No. 10962004)the Special-ized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)+1 种基金the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)the Natural Science Foundation of Inner Mongolia (No. 2009BS0101)
文摘This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.
文摘In this paper, the equations of motion and all boundary conditions as well as the energy equation for non_local asymmetric elasticity are derived together from the complete principles of virtual work and virtual power as well as the generalized Piola theorem. Adding the boundary conditions presented here to the results by Gao Jian and Dai Tianmin,the mixed boundary_value problem of the non_local asymmetric linear elasticity are formulated.
基金the National Natural Science Foundation of China (Nos. 10725210 and 10432030) the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060335107)the Program for New Century Excellent Talents in University, MOE, China (No. NCET-05-05010)
文摘The symplectic approach proposed and developed by Zhong et al. in 1990s for elasticity problems is a rational analytical method, in which ample experience is not needed as in the conventional semi-inverse method. In the symplectic space, elasticity problems can be solved using the method of separation of variables along with the eigenfunction expansion technique, as in traditional Fourier analysis. The eigensolutions include those corresponding to zero and nonzero eigenvalues. The latter group can be further divided into α-and β-sets. This paper reformulates the form of β-set eigensolutions to achieve the stability of numerical calculation, which is very important to obtain accurate results within the symplectic frame. An example is finally given and numerical results are compared and discussed.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
文摘In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.1120115911426102+4 种基金and 11571293)the Natural Science Foundation of Hunan Province(No.11JJ3135)the Foundation for Outstanding Young Teachers in Higher Education of Guangdong Province(No.Yq2013054)the Pearl River S&T Nova Program of Guangzhou(No.2013J2200063)the Construct Program of the Key Discipline in Hunan University of Science and Engineering
文摘This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.
文摘In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.
文摘In the use of finite element methods to the planar elasticity problems,one diffculty is to overcome locking when elasticity constant λ→∞.In the case of traction boundary condition,another diffculty is to make the discrete Korn's second inequality valid.In this paper,a triangular element is presented.We prove that this element is locking-free,the discrete Korn's second inequality holds and the convergence order is two.