Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image...Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.展开更多
Contemporary liberal theory on moral rights argues that moral rights associated with personal liberty constitute a strong constraint on the boundaries of state power.Therefore,the core issue of the penalty justificati...Contemporary liberal theory on moral rights argues that moral rights associated with personal liberty constitute a strong constraint on the boundaries of state power.Therefore,the core issue of the penalty justification is not the purpose of the penalty,but the reason for the penalty to refrain from infringing on the moral rights of individuals.In order to justify the penal system,scholars have explored solutions such as limiting the content of rights,waiving rights,and finally rights forfeiture.However,the concept of rights forfeiture cannot be reasonably integrated into the framework of the liberal theory of moral rights.The failure of these attempts stems from the patchwork understanding of rights presupposed by the liberal theory of moral rights.There is another systematic way of understanding rights that offers a better justification.Individual rights are not an independent non-derivative moral justification,and both individual rights and the penal power of the state are only part of a specific(realistic or ideal)system of rules that collectively serve certain values.The real question of penalty justification is not why the punishment does not infringe on the moral rights of individuals,but whether the overall institutional arrangements,including the penal system,are justifiable for all citizens,including the punished.展开更多
The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is signifi...The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.展开更多
For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle s...For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.展开更多
The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm po...The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm possesses global convergence, and under some conditions, it possesses locally supperlinear convergence.展开更多
In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived a...In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived and an exact solution for Фδ,α (0) is found. The relation between the joint density of the surplus immediately prior to ruin, and the deficit at ruin and the density of the surplus immediately prior to ruin is then obtained based on analytical methods.展开更多
Online gradient method has been widely used as a learning algorithm for training feedforward neural networks. Penalty is often introduced into the training procedure to improve the generalization performance and to de...Online gradient method has been widely used as a learning algorithm for training feedforward neural networks. Penalty is often introduced into the training procedure to improve the generalization performance and to decrease the magnitude of network weights. In this paper, some weight boundedness and deterministic con- vergence theorems are proved for the online gradient method with penalty for BP neural network with a hidden layer, assuming that the training samples are supplied with the network in a fixed order within each epoch. The monotonicity of the error function with penalty is also guaranteed in the training iteration. Simulation results for a 3-bits parity problem are presented to support our theoretical results.展开更多
In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and...In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.展开更多
The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exac...The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.展开更多
基金supported by the National Basic Research Program (No.2005CB321702)the National Outstanding Young Scientist Foundation(No. 10525102)the Specialized Research Grant for High Educational Doctoral Program(Nos. 20090211120011 and LZULL200909),Hong Kong RGC grants and HKBU FRGs
文摘Image restoration is often solved by minimizing an energy function consisting of a data-fidelity term and a regularization term.A regularized convex term can usually preserve the image edges well in the restored image.In this paper,we consider a class of convex and edge-preserving regularization functions,i.e.,multiplicative half-quadratic regularizations,and we use the Newton method to solve the correspondingly reduced systems of nonlinear equations.At each Newton iterate,the preconditioned conjugate gradient method,incorporated with a constraint preconditioner,is employed to solve the structured Newton equation that has a symmetric positive definite coefficient matrix. The eigenvalue bounds of the preconditioned matrix are deliberately derived,which can be used to estimate the convergence speed of the preconditioned conjugate gradient method.We use experimental results to demonstrate that this new approach is efficient, and the effect of image restoration is reasonably well.
基金the phased achievement of the 2023university(college)-level research program of the Party School of the Central Committee of C.P.C(National Academy of Governance):Research on the Legal Foundation of Digital Human Rights and Its Legal Guarantee Approaches。
文摘Contemporary liberal theory on moral rights argues that moral rights associated with personal liberty constitute a strong constraint on the boundaries of state power.Therefore,the core issue of the penalty justification is not the purpose of the penalty,but the reason for the penalty to refrain from infringing on the moral rights of individuals.In order to justify the penal system,scholars have explored solutions such as limiting the content of rights,waiving rights,and finally rights forfeiture.However,the concept of rights forfeiture cannot be reasonably integrated into the framework of the liberal theory of moral rights.The failure of these attempts stems from the patchwork understanding of rights presupposed by the liberal theory of moral rights.There is another systematic way of understanding rights that offers a better justification.Individual rights are not an independent non-derivative moral justification,and both individual rights and the penal power of the state are only part of a specific(realistic or ideal)system of rules that collectively serve certain values.The real question of penalty justification is not why the punishment does not infringe on the moral rights of individuals,but whether the overall institutional arrangements,including the penal system,are justifiable for all citizens,including the punished.
基金supported by the National Science Foundation of China (70771080)Social Science Foundation of Ministry of Education (10YJC630233)
文摘The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.
基金supported by National Hi-tech Research and Development Program of China (Grant No. 2006aa042439)
文摘For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully.
基金the National+4 种基金 Natural Science Foundation of China
文摘The algorithm proposed by T. F. Colemen and A. R. Conn is improved in this paper, and the improved algorithm can solve nonlinear programming problem with quality constraints. It is shown that the improved algorithm possesses global convergence, and under some conditions, it possesses locally supperlinear convergence.
文摘In this article, the expected discounted penalty function Фδ,α (u) with constant interest δ and "discounted factor" exp(-αTδ) is considered. As a result, the integral equation of Фδ,α (u) is derived and an exact solution for Фδ,α (0) is found. The relation between the joint density of the surplus immediately prior to ruin, and the deficit at ruin and the density of the surplus immediately prior to ruin is then obtained based on analytical methods.
基金The NSF (10871220) of Chinathe Doctoral Foundation (Y080820) of China University of Petroleum
文摘Online gradient method has been widely used as a learning algorithm for training feedforward neural networks. Penalty is often introduced into the training procedure to improve the generalization performance and to decrease the magnitude of network weights. In this paper, some weight boundedness and deterministic con- vergence theorems are proved for the online gradient method with penalty for BP neural network with a hidden layer, assuming that the training samples are supplied with the network in a fixed order within each epoch. The monotonicity of the error function with penalty is also guaranteed in the training iteration. Simulation results for a 3-bits parity problem are presented to support our theoretical results.
文摘In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.
文摘The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.