In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and...In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and its effects on the growth and development, yield and fruit quality of watermelon were investigated. The results showed that the cassava starch anaerobic fermentation liquid significant- ly promoted the vegetative and reproductive growth and improved the yield and fruit quality of watermelon. Compared with conventional fertilization, the application of cassava starch anaerobic fermentation both with COD concentration of 1 200 mg/L according to the amount of 150 t/hm2 promoted the growth of vines and leaves of watermelon plants, brought forward the flowering, fruiting and harvest of watermelon and significantly increased the fruit number, fruit weight, yield, fruit size, fruit shape index, soluble solid content, soluble sugar content, soluble protein content and Vita- min C content of watermelon. At the same time of improving the yield and quality of watermelon, cassava starch anaerobic fermentation liquid was turned into treasure as a liquid fertilizer. This study provides a new ideal for the yield and quality im- provement of watermelon and the wastewater treating of starch factories.展开更多
Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that ...Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.展开更多
Reducing CO_(2) to produce methane through microbial electrolytic cell(MEC)is one of the important methods of CO_(2) resource utilization.In view of the problem of low methanogenesis rate and weak CO_(2) conversion ra...Reducing CO_(2) to produce methane through microbial electrolytic cell(MEC)is one of the important methods of CO_(2) resource utilization.In view of the problem of low methanogenesis rate and weak CO_(2) conversion rate in the reduction process,theflowfield environment of the cathode chamber is changed by changing the upper gas cir-culation rate and the lower liquid circulation rate of the cathode chamber to explore the impact on the reactor startup and operation and products.The results showed that under certain conditions,the CO_(2) consumption and methane production rate could be increased by changing the upper gas recirculation rate alone,but the increase effect was not obvious,but the by-product hydrogen production decreased significantly.Changing the lower liquid circulation rate alone can effectively promote the growth of biofilm,and change the properties of biofilm at the later stage of the experiment,with the peak current density increased by 16%;The methanogenic rate decreased from the peak value of 0.561 to 0.3 mmol/d,and the CO_(2) consumption did not change signifi-cantly,which indicated that CO_(2) was converted into other organic substances instead of methane.The data after coupling the upper gas circulation rate with the lower liquid circulation rate is similar to that of only changing the lower liquid circulation rate,but changing the upper gas circulation rate can alleviate the decline of methane pro-duction rate caused by the change of biofilm properties,which not only improves the current density,but also increases the methane production rate by 0.05 mmol/d in the stable period.This study can provide theoretical and technical support for the industrial application scenario offlowfield regulation intervention of microbial elec-trolytic cell methanogenesis.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
In the process of bromine production,because of lag adjustment methods,there are problems of adjusting delay,raw material wastage and low growth rate.By considering the nature of bromine production,with the help of fu...In the process of bromine production,because of lag adjustment methods,there are problems of adjusting delay,raw material wastage and low growth rate.By considering the nature of bromine production,with the help of fuzzy data processing method,computer detection and display technique,we designed an automatic detection instrument for the ratio of chlorine to bromine in oxidized liquid of bromine production.This instrument can be used to detect the different parameters of raw materials adjustment and control in real time,and afford assurance that raw materials will be adjusted in time.This paper briefly introduces the working mechanism,hardware and software design of the instrument.展开更多
A oilfield was an oil reservoir with strong bottom water in offshore, the water cut was as high as 96%. In the high water cut stage, the most effective way of increasing oil production was to extract liquid and increa...A oilfield was an oil reservoir with strong bottom water in offshore, the water cut was as high as 96%. In the high water cut stage, the most effective way of increasing oil production was to extract liquid and increase oil. The processing capacity of oilfield fluid was limited by the conditions. By using Petrel-RE-2017 software, combining reservoir engineering and percolation mechanics methods, this paper analyzes the effect of large-scale liquid pumping, expand coverage and shut-in coning in oil reservoirs with bottom water, and formulates the adjustment strategy of single well production structure of the whole oilfield. It was confirmed that large-scale liquid production can expand coverage and shutting down well can reduce water cut. It can provide reference and guidance for oil field with strong bottom water when it encounters bottleneck of liquid treatment capacity.展开更多
1 INTRODUCTIONThe production of secondary metabolites using plant cells has been the subject of much inter-est in recent years.Despite that tremendous research efforts had been made in this topic,notmany products have...1 INTRODUCTIONThe production of secondary metabolites using plant cells has been the subject of much inter-est in recent years.Despite that tremendous research efforts had been made in this topic,notmany products have reached the commercial stage.It is generally acknowledged that the mainproblem in this field is the lack of basic knowledge of the biosynthetic routes,and the mechanisms found to bring about the production of such secondary metabolites.There are,however,some techniques that have beneficial effects on the production and ex-展开更多
[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1%...[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1% trichloroacetic acid (TDA) and acetonitrile. After purifying by solide phase extraction (SPE), the samples were analyzed by H PLC. r Result I The optimal conditions of HPLC were as follows: the chromatographic column was Zorbax SB-CS; the mobile phase was ion-pairs buffer-acetonitrile (95/5, V/V) ; the flow rate was 1.0 ml/min; the column temperature was 25 ℃ and the UV detection wavelength was 235 nm. The determined melamine concentration range was 0.001 -0.050 mg/ml; the linear correlation coefficient was 0.999 4; the concentration limit of melamine was 0.1 mg/kg; the average recovery rate of the melamine were 97.60% - 100.65%, and the relative standard deviation (RSD) was 1.23% -3.04%.[ Conclusion] The HPLC is simple, accurate and repeatable for determination of the melamine in animal blood products.展开更多
Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests t...Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 sweet and grain sorghum accessions. Stems were harvested twice at the soft-dough stage and the stems were pressed with a hydraulic press. Sugars in the stem juice were quantified by high performance liquid chromatography. Sweet sorghum produced five times more fresh stem weight and dry stem mass (830 gand164 g) than grain sorghum (150 gand27g). Sweet sorghum produced a much higher volume of juice and higher yield of sugars (366 ml and42 g) per stem than grain sorghum (70 ml and4 g). Significant variability in fresh stem weight (72 - 1837 g), juice volume (31 - 753 ml), sugar yield (3 - 81 g), dry stem mass (14 - 383 g), and sugar yield/dry stem mass ratio (0.11 - 0.53) per stem was detected among sweet sorghum accessions. Stem sugar yield was significantly correlated with stem fresh weight and juice volume. Sorghum was harvested twice within one growing season resulting in some sweet sorghum accessions producing double amount of sugars. Sweet sorghum produced three times more dry mass weight (bagasse) than fermentable sugar weight. To reduce feedstock cost, methods have to be developed for efficiently utilizing bagasse. Our results showed high fresh stem weight, high ratio of sugar yield to dry stem mass, and double harvests are prime traits to boost sugar yield. Sweet sorghum may be suitable for multiple harvests in certain regions of theU.S.TheU.S.sweet sorghum collection needs to be screened for acces- sions that can be harvested twice with an extended feedstock-production season and used as a feedstock for sustainable and renewable bioenergy production.展开更多
Natural gas production is related to the demand for gas, which is low in summer and high in winter. While the gas storage is still being demonstrated and constructed, oil and gas fields should formulate and implement ...Natural gas production is related to the demand for gas, which is low in summer and high in winter. While the gas storage is still being demonstrated and constructed, oil and gas fields should formulate and implement production control schemes suitable for gas reservoirs. The realization of natural gas production can not only meet the demand of gas consumption, but also ensure the scientific and efficient development of gas reservoirs, and meet the needs of dynamic analysis of gas reservoirs at different development stages and scientific research of gas reservoirs. In this paper, KAPPA Workstation 5.20 software is used to determine the inflow dynamic model of a single well. The nodal method is used to determine the reasonable production and peak shaving capacity in combination with the critical fluid carrying capacity of gas wells and the erosion rate of gas wells. The reasonable production allocation in each period, i.e. the production control scheme, is obtained. It solves the scientific and efficient development of natural gas in X gas field, which is still under the construction of gas storage, and provides guidance for gas reservoir development management and regulation.展开更多
Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient produc...Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient production of Cu_(2-x)Se nanoparticles(NPs)through a green and convenient way is still hindered by the inevitable non-environmentally friendly operations in common chemical synthesis.Herein,we initially reveal the coexistence of seleninic acid content and elemental selenium(Se)NPs in pulsed laser-generated Se colloidal solution.Consequently,we put forward firstly a closedcycle reaction mode for totally green production of Cu_(1.8)Se NPs to exclude traditional requirements of high temperature and toxic precursors by using Se colloidal solution.In such closed-cycle reaction,seleninic acid works as the initiator to oxidize copper sheet to release cuprous ions which can catalyze the disproportion of Se NPs to form Se O_(3)^(2-)and Se^(2-)ions and further produce Cu_(2-x)Se NPs,and the by-product SeO_(3)^(2-)ions promote subsequent formation of cuprous from the excessive Cu sheet.In experiments,the adequate copper(Cu)sheet was simply dipped into such Se colloidal solution at 70℃,and then the stream of Cu_(1.8)SeNPs could be produced until the exhaustion of selenium source.The conversion rate of Se element reaches to more than 75%when the size of Se NPs in weakly acidic colloidal solution is limited between 1 nm and 50 nm.The laser irradiation duration shows negative correlation with the size of Se NPs and unobvious impact to the p H of the solution which both are essential to the high yield of Cu_(1.8)SeNPs.Before Cu sheet is exhausted,Se colloidal solution can be successively added without influences to the product quality and the Se conversion rate.Such green methodology positively showcases a brand-new and potential strategy for mass production of Cu_(2-x)Se nanomaterials.展开更多
Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of ...Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of development is established. The model is solved by improved simultaneous perturbation stochastic approximation algorithm(SPSA), and an automatic optimization software for liquid production is developed. This model avoids the disadvantage of traditional optimization methods that only focus on the maximum value of mathematics but ignore the production law of oilfield. It has the advantages of high efficiency of calculation, short period and automatic optimization. It can satisfy the automatic optimization of liquid production in later stage of oilfield development. The software was applied in the oilfield development of D oilfield, Ecuador in South America, and realized the automatic optimization of liquid production in the later stage of oilfield development.展开更多
The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X...The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X-ray diffraction (XRD) and infrared spectroscopy (IR) The corrosion products formed on the Cu alloy surface during anodizing, are Cu2O, Cu2(OH)3Cl, and Cu2S. NaCl is detected in the corrosion products. The film formation depends on the applied current and the shift of potential to nobler direction indicates its formation progress.展开更多
The Karachi Port of Pakistan is a deep natural sea port with a history of 150 years. The Port has an 11 km long approach channel decaracted with buoys for proriding safe navigation of 75,000 DWT tankers,modern contain...The Karachi Port of Pakistan is a deep natural sea port with a history of 150 years. The Port has an 11 km long approach channel decaracted with buoys for proriding safe navigation of 75,000 DWT tankers,modern container vessels,bulk Karachi Port is the premier port of Pakistan and handles over 85 percent of the whole dry gen-展开更多
This study was undertaken to evaluate the efficiency of a liquid-solids separation process and microwave pretreatment, as well as anaerobic biodegradability of microwave pretreated dairy manure. Liquid-solids separati...This study was undertaken to evaluate the efficiency of a liquid-solids separation process and microwave pretreatment, as well as anaerobic biodegradability of microwave pretreated dairy manure. Liquid-solids separation of raw dairy manure resulted in solid and liquid fractions having different properties, with the solid fractions richer in total and volatile solids content and liquid fractions richer in nutrients and metal ions. Substantial amounts of soluble chemical oxygen demand and nutrients were released into the solution after the microwave treatment. The microwave pretreated dairy manure was also subjected to anaerobic digestion. The kinetic parameters of methane production potential, maximum methane production rate and lag time were determined using the modified Gompertz equation. Anaerobic digestion of liquid manure, without microwave treatment, outperformed the sets with microwave treatment. The microwave-treated liquid dairy manure, without acid addition had better results in terms of methane potential and methane production, than with acid addition. Thermophilic digestion exhibited a higher maximum methane production rate than that of mesophilic digestion, but lower methane yields. The microwave pretreatment of dairy manure resulted in high soluble chemical oxygen demand;however, methane yield was not increased.展开更多
Dairy production plays an integral part in supporting smallholder farmers’ livelihoods. The desire to increase the number of dairy cattle is not feasible due to the reduced output of feed resources occasioned by clim...Dairy production plays an integral part in supporting smallholder farmers’ livelihoods. The desire to increase the number of dairy cattle is not feasible due to the reduced output of feed resources occasioned by climate change. Consequently, the need to increase productivity per cow is inevitable. Conventional protein supplements are costly;hence, the need to explore affordable nutrientdense alternative feed resources. Liquid brewers’ yeast (LBY), a by-product of the brewing industry, is a rich protein supplement in dairy production. This study aimed to assess the dairy farming conditions and utilization levels of LBY as a feed supplement in Githunguri Sub-county, Kiambu. Semi-structured questionnaires were administered to 457 dairy farmers in a cross-sectional survey. The findings revealed that most farmers (94.2%) fed their cattle on established forage/fodder and crop residues with supplementation. Even though 53.1% of the respondents were aware of the use of LBY, only 30.6% utilized it to supplement dairy cows, most of whom (96.0%) used it fresh without preservation. Membership in farmers’ organizations increased awareness of LBY (r = 0.732). Principal component analysis indicated that the benefits of using LBY outweigh the challenges involved with a loading matrix of 0.891 - 0.954 and 0.681 - 0.807, respectively. The low adoption and use levels of LBY as a source of protein supplements were due to low awareness. There is a need for concerted efforts by stakeholders in the industry to increase farmers’ knowledge base on the utilization and effectiveness of LBY in dairy production.展开更多
文摘In order to find out a new way for environment-friendly and resourcelized utilization of cassava starch processing wastewater, the cassava starch anaerobic fermentation liquid was applied in watermelon production, and its effects on the growth and development, yield and fruit quality of watermelon were investigated. The results showed that the cassava starch anaerobic fermentation liquid significant- ly promoted the vegetative and reproductive growth and improved the yield and fruit quality of watermelon. Compared with conventional fertilization, the application of cassava starch anaerobic fermentation both with COD concentration of 1 200 mg/L according to the amount of 150 t/hm2 promoted the growth of vines and leaves of watermelon plants, brought forward the flowering, fruiting and harvest of watermelon and significantly increased the fruit number, fruit weight, yield, fruit size, fruit shape index, soluble solid content, soluble sugar content, soluble protein content and Vita- min C content of watermelon. At the same time of improving the yield and quality of watermelon, cassava starch anaerobic fermentation liquid was turned into treasure as a liquid fertilizer. This study provides a new ideal for the yield and quality im- provement of watermelon and the wastewater treating of starch factories.
基金Supported by the Fundamental Research Funds for the Central Universities(JUSRP11205)
文摘Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.
基金This paper is supported by Shanghai Science and Technology Development Fund,China,No.19DZ1205604.
文摘Reducing CO_(2) to produce methane through microbial electrolytic cell(MEC)is one of the important methods of CO_(2) resource utilization.In view of the problem of low methanogenesis rate and weak CO_(2) conversion rate in the reduction process,theflowfield environment of the cathode chamber is changed by changing the upper gas cir-culation rate and the lower liquid circulation rate of the cathode chamber to explore the impact on the reactor startup and operation and products.The results showed that under certain conditions,the CO_(2) consumption and methane production rate could be increased by changing the upper gas recirculation rate alone,but the increase effect was not obvious,but the by-product hydrogen production decreased significantly.Changing the lower liquid circulation rate alone can effectively promote the growth of biofilm,and change the properties of biofilm at the later stage of the experiment,with the peak current density increased by 16%;The methanogenic rate decreased from the peak value of 0.561 to 0.3 mmol/d,and the CO_(2) consumption did not change signifi-cantly,which indicated that CO_(2) was converted into other organic substances instead of methane.The data after coupling the upper gas circulation rate with the lower liquid circulation rate is similar to that of only changing the lower liquid circulation rate,but changing the upper gas circulation rate can alleviate the decline of methane pro-duction rate caused by the change of biofilm properties,which not only improves the current density,but also increases the methane production rate by 0.05 mmol/d in the stable period.This study can provide theoretical and technical support for the industrial application scenario offlowfield regulation intervention of microbial elec-trolytic cell methanogenesis.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘In the process of bromine production,because of lag adjustment methods,there are problems of adjusting delay,raw material wastage and low growth rate.By considering the nature of bromine production,with the help of fuzzy data processing method,computer detection and display technique,we designed an automatic detection instrument for the ratio of chlorine to bromine in oxidized liquid of bromine production.This instrument can be used to detect the different parameters of raw materials adjustment and control in real time,and afford assurance that raw materials will be adjusted in time.This paper briefly introduces the working mechanism,hardware and software design of the instrument.
文摘A oilfield was an oil reservoir with strong bottom water in offshore, the water cut was as high as 96%. In the high water cut stage, the most effective way of increasing oil production was to extract liquid and increase oil. The processing capacity of oilfield fluid was limited by the conditions. By using Petrel-RE-2017 software, combining reservoir engineering and percolation mechanics methods, this paper analyzes the effect of large-scale liquid pumping, expand coverage and shut-in coning in oil reservoirs with bottom water, and formulates the adjustment strategy of single well production structure of the whole oilfield. It was confirmed that large-scale liquid production can expand coverage and shutting down well can reduce water cut. It can provide reference and guidance for oil field with strong bottom water when it encounters bottleneck of liquid treatment capacity.
文摘1 INTRODUCTIONThe production of secondary metabolites using plant cells has been the subject of much inter-est in recent years.Despite that tremendous research efforts had been made in this topic,notmany products have reached the commercial stage.It is generally acknowledged that the mainproblem in this field is the lack of basic knowledge of the biosynthetic routes,and the mechanisms found to bring about the production of such secondary metabolites.There are,however,some techniques that have beneficial effects on the production and ex-
基金supported by the Shanghai Key Development Project of Agriculture Science and Technology (2009 No.6-3)
文摘[Objective] To investigate the optimal determination conditions of melamine in animal blood products by high performance liquid chromatography (HPLC). [ Method] The blood samples were extracted with ultrasonic in 1% trichloroacetic acid (TDA) and acetonitrile. After purifying by solide phase extraction (SPE), the samples were analyzed by H PLC. r Result I The optimal conditions of HPLC were as follows: the chromatographic column was Zorbax SB-CS; the mobile phase was ion-pairs buffer-acetonitrile (95/5, V/V) ; the flow rate was 1.0 ml/min; the column temperature was 25 ℃ and the UV detection wavelength was 235 nm. The determined melamine concentration range was 0.001 -0.050 mg/ml; the linear correlation coefficient was 0.999 4; the concentration limit of melamine was 0.1 mg/kg; the average recovery rate of the melamine were 97.60% - 100.65%, and the relative standard deviation (RSD) was 1.23% -3.04%.[ Conclusion] The HPLC is simple, accurate and repeatable for determination of the melamine in animal blood products.
文摘Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 sweet and grain sorghum accessions. Stems were harvested twice at the soft-dough stage and the stems were pressed with a hydraulic press. Sugars in the stem juice were quantified by high performance liquid chromatography. Sweet sorghum produced five times more fresh stem weight and dry stem mass (830 gand164 g) than grain sorghum (150 gand27g). Sweet sorghum produced a much higher volume of juice and higher yield of sugars (366 ml and42 g) per stem than grain sorghum (70 ml and4 g). Significant variability in fresh stem weight (72 - 1837 g), juice volume (31 - 753 ml), sugar yield (3 - 81 g), dry stem mass (14 - 383 g), and sugar yield/dry stem mass ratio (0.11 - 0.53) per stem was detected among sweet sorghum accessions. Stem sugar yield was significantly correlated with stem fresh weight and juice volume. Sorghum was harvested twice within one growing season resulting in some sweet sorghum accessions producing double amount of sugars. Sweet sorghum produced three times more dry mass weight (bagasse) than fermentable sugar weight. To reduce feedstock cost, methods have to be developed for efficiently utilizing bagasse. Our results showed high fresh stem weight, high ratio of sugar yield to dry stem mass, and double harvests are prime traits to boost sugar yield. Sweet sorghum may be suitable for multiple harvests in certain regions of theU.S.TheU.S.sweet sorghum collection needs to be screened for acces- sions that can be harvested twice with an extended feedstock-production season and used as a feedstock for sustainable and renewable bioenergy production.
基金National Key Fundamental Research Program (No.2004CCA07300) National Natural Science Foundation of China (No.20176017)+1 种基金 National Hi-tech Research and Development Program (No.AA514020-02) Anhui Excellent Youth Science and Technology Foundation (No.04044059)
文摘Natural gas production is related to the demand for gas, which is low in summer and high in winter. While the gas storage is still being demonstrated and constructed, oil and gas fields should formulate and implement production control schemes suitable for gas reservoirs. The realization of natural gas production can not only meet the demand of gas consumption, but also ensure the scientific and efficient development of gas reservoirs, and meet the needs of dynamic analysis of gas reservoirs at different development stages and scientific research of gas reservoirs. In this paper, KAPPA Workstation 5.20 software is used to determine the inflow dynamic model of a single well. The nodal method is used to determine the reasonable production and peak shaving capacity in combination with the critical fluid carrying capacity of gas wells and the erosion rate of gas wells. The reasonable production allocation in each period, i.e. the production control scheme, is obtained. It solves the scientific and efficient development of natural gas in X gas field, which is still under the construction of gas storage, and provides guidance for gas reservoir development management and regulation.
基金the Fund from Hefei National Laboratory for Physical Sciences at the Microscale(Grant No.KF2020110)the Natural Science Foundation of Anhui Province,China(Grant No.1908085ME146)+3 种基金the Key Research and Development Plan of Anhui Province,China(Grant No.201904a05020049)the Director Fund of Institute of Solid State Physics,Chinese Academy of Sciences(Grant No.2019DFY01)the National Natural Science Foundation of China(Grant Nos.52071313 and 51971211)the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(Grant Nos.YZJJZX202018 and YZJJ202102)。
文摘Non-stoichiometric copper selenide(Cu_(2-x)Se,x=0.18~0.25)nanomaterials have attracted extensive attentions due to their excellent thermoelectric,optoelectronic and photocatalytic performances.However,efficient production of Cu_(2-x)Se nanoparticles(NPs)through a green and convenient way is still hindered by the inevitable non-environmentally friendly operations in common chemical synthesis.Herein,we initially reveal the coexistence of seleninic acid content and elemental selenium(Se)NPs in pulsed laser-generated Se colloidal solution.Consequently,we put forward firstly a closedcycle reaction mode for totally green production of Cu_(1.8)Se NPs to exclude traditional requirements of high temperature and toxic precursors by using Se colloidal solution.In such closed-cycle reaction,seleninic acid works as the initiator to oxidize copper sheet to release cuprous ions which can catalyze the disproportion of Se NPs to form Se O_(3)^(2-)and Se^(2-)ions and further produce Cu_(2-x)Se NPs,and the by-product SeO_(3)^(2-)ions promote subsequent formation of cuprous from the excessive Cu sheet.In experiments,the adequate copper(Cu)sheet was simply dipped into such Se colloidal solution at 70℃,and then the stream of Cu_(1.8)SeNPs could be produced until the exhaustion of selenium source.The conversion rate of Se element reaches to more than 75%when the size of Se NPs in weakly acidic colloidal solution is limited between 1 nm and 50 nm.The laser irradiation duration shows negative correlation with the size of Se NPs and unobvious impact to the p H of the solution which both are essential to the high yield of Cu_(1.8)SeNPs.Before Cu sheet is exhausted,Se colloidal solution can be successively added without influences to the product quality and the Se conversion rate.Such green methodology positively showcases a brand-new and potential strategy for mass production of Cu_(2-x)Se nanomaterials.
基金Supported by the China National Science and Technology Major Project(2016ZX05031-001)
文摘Based on the optimal control theory and taking the production law of reservoirs with strong natural aquifer as the basic constraint, a mathematical model of liquid production for such reservoirs in the later stage of development is established. The model is solved by improved simultaneous perturbation stochastic approximation algorithm(SPSA), and an automatic optimization software for liquid production is developed. This model avoids the disadvantage of traditional optimization methods that only focus on the maximum value of mathematics but ignore the production law of oilfield. It has the advantages of high efficiency of calculation, short period and automatic optimization. It can satisfy the automatic optimization of liquid production in later stage of oilfield development. The software was applied in the oilfield development of D oilfield, Ecuador in South America, and realized the automatic optimization of liquid production in the later stage of oilfield development.
文摘The effect of cooling liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X-ray diffraction (XRD) and infrared spectroscopy (IR) The corrosion products formed on the Cu alloy surface during anodizing, are Cu2O, Cu2(OH)3Cl, and Cu2S. NaCl is detected in the corrosion products. The film formation depends on the applied current and the shift of potential to nobler direction indicates its formation progress.
文摘The Karachi Port of Pakistan is a deep natural sea port with a history of 150 years. The Port has an 11 km long approach channel decaracted with buoys for proriding safe navigation of 75,000 DWT tankers,modern container vessels,bulk Karachi Port is the premier port of Pakistan and handles over 85 percent of the whole dry gen-
文摘This study was undertaken to evaluate the efficiency of a liquid-solids separation process and microwave pretreatment, as well as anaerobic biodegradability of microwave pretreated dairy manure. Liquid-solids separation of raw dairy manure resulted in solid and liquid fractions having different properties, with the solid fractions richer in total and volatile solids content and liquid fractions richer in nutrients and metal ions. Substantial amounts of soluble chemical oxygen demand and nutrients were released into the solution after the microwave treatment. The microwave pretreated dairy manure was also subjected to anaerobic digestion. The kinetic parameters of methane production potential, maximum methane production rate and lag time were determined using the modified Gompertz equation. Anaerobic digestion of liquid manure, without microwave treatment, outperformed the sets with microwave treatment. The microwave-treated liquid dairy manure, without acid addition had better results in terms of methane potential and methane production, than with acid addition. Thermophilic digestion exhibited a higher maximum methane production rate than that of mesophilic digestion, but lower methane yields. The microwave pretreatment of dairy manure resulted in high soluble chemical oxygen demand;however, methane yield was not increased.
文摘Dairy production plays an integral part in supporting smallholder farmers’ livelihoods. The desire to increase the number of dairy cattle is not feasible due to the reduced output of feed resources occasioned by climate change. Consequently, the need to increase productivity per cow is inevitable. Conventional protein supplements are costly;hence, the need to explore affordable nutrientdense alternative feed resources. Liquid brewers’ yeast (LBY), a by-product of the brewing industry, is a rich protein supplement in dairy production. This study aimed to assess the dairy farming conditions and utilization levels of LBY as a feed supplement in Githunguri Sub-county, Kiambu. Semi-structured questionnaires were administered to 457 dairy farmers in a cross-sectional survey. The findings revealed that most farmers (94.2%) fed their cattle on established forage/fodder and crop residues with supplementation. Even though 53.1% of the respondents were aware of the use of LBY, only 30.6% utilized it to supplement dairy cows, most of whom (96.0%) used it fresh without preservation. Membership in farmers’ organizations increased awareness of LBY (r = 0.732). Principal component analysis indicated that the benefits of using LBY outweigh the challenges involved with a loading matrix of 0.891 - 0.954 and 0.681 - 0.807, respectively. The low adoption and use levels of LBY as a source of protein supplements were due to low awareness. There is a need for concerted efforts by stakeholders in the industry to increase farmers’ knowledge base on the utilization and effectiveness of LBY in dairy production.