期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ON THE LOWER BOUND FOR A CLASS OF HARMONIC FUNCTIONS IN THE HALF SPACE 被引量:4
1
作者 张艳慧 邓冠铁 高洁欣 《Acta Mathematica Scientia》 SCIE CSCD 2012年第4期1487-1494,共8页
The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize th... The main objective is to derive a lower bound from an upper one for harmonic functions in the half space, which extends a result of B. Y. Levin from dimension 2 to dimension n 〉 2. To this end, we first generalize the Carleman's formula for harmonic functions in the half plane to higher dimensional half space, and then establish a Nevanlinna's representation for harmonic functions in the half sphere by using HSrmander's theorem. 展开更多
关键词 harmonic function Carleman's formula Nevanlinna's representation for halfsphere lower bound
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部