Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ...Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.展开更多
Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become o...Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.展开更多
In this paper we take photobacterium phosphoreum (T3) as the experimental bacteria, and determine the half-inhibitory concentration (-1gEC50) against the photobacterium phosphoreum of 16 halogenated benzenes. Usin...In this paper we take photobacterium phosphoreum (T3) as the experimental bacteria, and determine the half-inhibitory concentration (-1gEC50) against the photobacterium phosphoreum of 16 halogenated benzenes. Using B3LYP method of DFT in the Gaussian 03 program, we obtain the structural and thermodynamic descriptors of 16 halogenated benzenes by fully-optimized calculation at the 6-311G** level. Taking the structural and thermodynamic descriptors as theoretical descriptors, the 2D QSAR model (R2 = 0.983) was established, which can be utilized to predict -lgEC50 of halogenated benzene according to the corrected linear solvation energy theory based on the experimental data of-lgECs0. In addition, the relationship between the toxicity and 3D spatial structure of the compound is studied by comparing the molecular similarity index analysis (CoMSIA) of 3D-QSAR method. By cross validation, the correlation coefficient q2 of CoMSIA model is 0.687, and the conventional correlation coefficient R2 = 0.958. The model is stable and reliable with great predictive ability. The 3D-QSAR model shows that the toxicity of halogenated benzene compound is mainly affected by the characteristics of hydrophobie field of the substituted halogens.展开更多
Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 hal...Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.展开更多
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ...The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.展开更多
Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based s...Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based structural descriptors derived from these electrostatic potentials have been obtained. Multiple linear regression analysis and artificial neural network are employed simultaneously in this paper. The result shows that the parameters derived from electrostatic 2 potentials σtot^2, V s and ∑ Vs^+, together with the molecular volume (Vine) can be used to express the quantitative structure-infinite dilution activity coefficients (γ^∞) relationship of halogenated hydrocarbons in water. The result also demonstrates that the model obtained by using BFGS quasiNewton neural network method has much better predictive capability than that from multiple linear regression. The goodness of the model has been validated through exploring the predictive power for the external test set. The model obtained via neural network may be applied to predict γ^∞ of other halogenated hydrocarbons not present in the data set.展开更多
The halogenated boron-doped diamond (BDD) surfaces were reacted with sodium azide through a nucle- ophilic substitution reaction. The resulting azide-terminated BDD surfaces were used to trigger the "click" reacti...The halogenated boron-doped diamond (BDD) surfaces were reacted with sodium azide through a nucle- ophilic substitution reaction. The resulting azide-terminated BDD surfaces were used to trigger the "click" reaction. Because of the attractive electrochemical properties of ferrocene-containing molecules, such as fast electron transfer rates, reversible redox activities, and favorable redox potentials, we show that ferrocene derivatives can be grafted onto non-oxidized diamond surfaces by "click chemistry". These redox-active ferrocene-containing layers on a BDD surface, because of their ability to store and release charges reversibly, have the potential to be used as hybrid molecular/semiconductor memory devices.展开更多
"One-step"method for the synthesis of secondary aliphatic amine substituted nitrobenzaldehyde was developed.In the presence of Pd catalyst,halogenated nitrobenzaldehyde could be smoothly coupled with seconda..."One-step"method for the synthesis of secondary aliphatic amine substituted nitrobenzaldehyde was developed.In the presence of Pd catalyst,halogenated nitrobenzaldehyde could be smoothly coupled with secondary aliphatic amine to give the target product in hexamethylphosphamide(HMPT) media without the protection of aldehyde groups.展开更多
A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of...A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of 3D geometry of the halogenated hydrocarbons with semi-empirical quantum chemical calculations at the AM1 level, different descriptors (1514 descriptors) were calculated by the HyperChem and Dragon softwares. A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ant colony optimization (ACO) algorithm was proposed to select the best descriptors. Then the selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the training set were obtained as 4.36% and 0.951, respectively, while the corresponding values for the test set were 5.96% and 0.929, respectively. The results showed that the applied procedure is suitable for the prediction of γ∞ of halogenated hydrocarbons in water.展开更多
The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relat...The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relationships between the logarithm of capacity factor lgK' and methanol ratio ψ were analyzed. A fair linear relationship is found between lgK' and ψ, and the correlation coefficients R2 of the constructed linear equations are all greater than 0.990. Relationship between the chromatographic data lgKw' when extrapolated to pure water and n-octanol/water partition coefficient lgKow obtained by the group contribution method has shown a good linear correlation with R2= 0.956. The structure parameters of fourteen halogenated thiophenols were calculated by using DFT, and the correlation equation of lgKw' and structure parameters was obtained by using SPSS, lgKw' = -0.409 + 0.039a and R2 = 0.981, meaning that lgKw' is mainly determined by the polarizability α.展开更多
Halogenated natural products(HNPs)are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known.Therefore,several persistent and bioaccumulative HNP groups,together w...Halogenated natural products(HNPs)are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known.Therefore,several persistent and bioaccumulative HNP groups,together with manmade polychlorinated biphenyls(PCBs)and polybrominated diphenyl ethers(PBDEs),were quantified in the blubber of nine sperm whales(Physeter macrocephalus)stranded on the coast of the Mediterranean Sea in Italy.The naturally occurring polybrominated hexahydroxanthene derivatives(PBHDs;sum of TetraBHD and TriBHD)were the most prominent substance class with up to 77,000 ng/g blubber.The mean PBHD content(35,800 ng/g blubber)even exceeded the one of PCBs(28,400 ng/g blubber),although the region is known to be highly contaminated with manmade contaminants.Based on mean values,Q1∼PBDEs>MeO-BDEs∼2,2′-diMeO-BB 80 and several other HNPs followed with decreasing amounts.All blubber samples contained an abundant compound whose molecular formula(C_(16)H_(19)Br_(3)O_(2))was verified using high-resolution mass spectrometry.The only plausible matching isomer was(2S,4′S,9R,9′S)-2,7-dibromo-4′-bromomethyl-1,1-dimethyl-2,3,4,4′,9,9′-9,9′-hexahydro-1H-xanthen-9-ol(OH-TriBHD),a hydroxylated secondary metabolite previously detected together with TriBHD and TetraBHD in a sponge known to be a natural producer of PBHDs.The estimated mean amount of the presumed OH-TriBHD was 3000 ng/g blubber,which is unexpectedly high for hydroxylated compounds in the lipids of marine mammals.展开更多
Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising...Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.展开更多
In this study,we conducted exposure experiments on egg-laying hens to explore the toxicokinetics and maternal transfer characteristics of lipophilic and proteinophilic halogenated organic pollutants(HOPs).The lipophil...In this study,we conducted exposure experiments on egg-laying hens to explore the toxicokinetics and maternal transfer characteristics of lipophilic and proteinophilic halogenated organic pollutants(HOPs).The lipophilic HOPs included polychlorinated biphenyls(PCBs),polybrominated diphenyl ethers(PBDEs),and dechlorane plus(DPs),while the proteinophilic HOPs included perfluorocarboxylic acids(PFCAs).The results revealed that most of lipophilic HOPs exhibit lower depuration rate(kd)than PFCAs.The kd of lipophilic HOPs correlated with the octanol−water partition coefficient(log KOW)values in a V-shaped curve,whereas that of PFCAs correlated with the protein−water partition coefficient(log KPW)values in an inverted V-shaped curve.The depuration rate,rather than the uptake rate,was a leading factor in determining the bioaccumulation potential of HOPs in hens.Although the dominant factors determining the tissue distribution of the two types of compounds were explicit(fats vs phospholipids),chemical-specific tissue distribution was still observed.The egg-maternal concentration ratio was dependent on the exposure status,concentration,and maternal tissue choice.Using a single maternal tissue may not be an appropriate method for assessing chemical maternal transfer potential.PFCAs have a greater maternal transfer potential(>80%of the total body burden)than lipophilic HOPs(approximately 30%for BDE209 and DPs,and less than 10%for the others).Their lipophilic and partly proteinophilic nature makes the toxicokinetics and maternal transfer characteristics of BDE209 and DPs different from those of other lipophilic HOPs.These findings are crucial for enhancing our understanding of the behavior and fate of HOPs in egg-laying hens.展开更多
Thienoacenes is one of most important groups of semiconducting materials due to the high stability and superior mobility.However,there are scarce studies on the emission properties of thienoacenes to date.Herein,we sy...Thienoacenes is one of most important groups of semiconducting materials due to the high stability and superior mobility.However,there are scarce studies on the emission properties of thienoacenes to date.Herein,we synthesized fluorinated and chlorinated dibenzo[d,d’]thieno[3,2-b;4,5-b’]dithiophenes(DBTDTs)derivatives F6-DBTDT and Cl6-DBTDT by sulfoxide cyclization,significantly lowering the energy levels relative to the parent compound DBTDT.According to single crystal structure analysis,F6-DBTDT molecules adopt one-dimensional slipped stacking with closeπ-πinteractions of 3.43Å(1Å=0.1 nm),which is different from the parent compound DBTDT with herringbone stacking motif.Interestingly,the halogenated DBTDT derivatives exhibit enhanced emission properties both in solution and in the solid state,opening up possiblities to improve photoluminescence of thienoacences by halogenation.展开更多
Halogenated thiophenes are generally used units for constructing organic semiconductor materials for photovoltaic applications.Here,we introduced thiophene,2-bromothiophene,and 2-chlorothiophene units to the central c...Halogenated thiophenes are generally used units for constructing organic semiconductor materials for photovoltaic applications.Here,we introduced thiophene,2-bromothiophene,and 2-chlorothiophene units to the central core of quinoxaline-based acceptors and obtained three acceptors,Qx-H,Qx-Br,and Qx-Cl,respectively.Compared with Qx-H,Qx-Br and Qx-Cl showed enhanced absorption,down-shifted energy levels,improved crystallinity,and reduced energy disorder.The improved crystallinity significantly optimized the blend morphology,leading to efficient charge generation and transport and,therefore,less bimolecular recombination.Eventually,PM6:Qx-Br-based devices exhibited an outstanding power conversion efficiency of 17.42%with a high open-circuit voltage(VOC)of 0.915 V.Furthermore,Y6 was introduced into the PM6:Qx-Br binary system to improve the light utilization,and the resulting ternary devices delivered a high PCE of 18.36%.This study demonstrated the great potential of halogenated thiophene substitution in quinoxaline-based acceptors for building high-performance organic solar cell acceptor materials.展开更多
Halogenation of N-cinnamylbenzamides and N-[(2H-chromen-3-yl)methyl]benzamides using electrophilic halogen source was reported.Various halogenated dihydro-1,3-oxazine derivatives(45 examples)were synthesized in high t...Halogenation of N-cinnamylbenzamides and N-[(2H-chromen-3-yl)methyl]benzamides using electrophilic halogen source was reported.Various halogenated dihydro-1,3-oxazine derivatives(45 examples)were synthesized in high to excellent yields(up to 98%yields),as well as halogenated dihydrochromeno-1,3-oxazine derivatives(56 examples,up to 96%yields).The properties of mild conditions,metal-free and high efficiency of the reaction made it a promising strategy in future applications for the construction of carbon-halogen(fluorine,F;chlorine,Cl;bromine,Br;iodine,I)bond and 1,3-oxazine derivatives.展开更多
This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C cata...This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C catalyst, minor amount of water reduces the induction time, increases the reaction rate and reaction TOFs. Water might enhance the diffusion, adsorption and dissociation of H2 on Pd catalysts.展开更多
Ultra-dispersed Ni nanoparticles(7.5 nm)on nitrogen-doped carbon nanoneedles(Ni@NCNs)were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to c...Ultra-dispersed Ni nanoparticles(7.5 nm)on nitrogen-doped carbon nanoneedles(Ni@NCNs)were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines.Two different crystallization methods(stirring and static)were compared and the optimal pyrolysis temperature was explored.Ni@NCNs were systematically characterized by wide analytical techniques.In the hydrogenation of p-chloronitrobenzene,Ni@NCNs-600(pyrolyzed at 600°C)exhibited extraordinarily high performance with 77.9 h^(–1)catalytic productivity and>99%p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions(90°C,1.5 MPa H2),showing obvious superiority compared with reported Ni-based catalysts.Notably,the reaction smoothly proceeded at room temperature with full conversion and>99%selectivity.Moreover,Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups(halogen,nitrile,keto,carboxylic,etc.),and could be easily recycled by magnetic separation and reused for 5 times without deactivation.The adsorption tests showed that the preferential adsorption of–NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene,thus achieving high p-chloroaniline selectivity.While the high activity can be attributed to high Ni dispersion,special morphology,and rich pore structure of the catalyst.展开更多
Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen...Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen-containing natural products with abundant biological functionality and good drugability.Meanwhile,biosynthetically halogenated reactions are known as a significant strategy used to increase the pharmacological activities and pharmacokinetic properties of compounds.Given that a tremendous increase in the number of new halogenated compounds from marine microorganisms in the last five years,it is necessary to summarize these compounds with their diverse structures and promising bioactivities.In this review,we have summarized the chemistry,biosynthesis(related halogenases),and biological activity of a total of 316 naturally halogenated compounds from marine microorganisms covering the period of 2015 to May 2021.Those reviewed chlorinated and brominated compounds with the ratio of 9:1 were predominantly originated from 36 genera of fungi(62%)and 9 bacterial strains(38%)with cytotoxic,antibacterial,and enzyme inhibitory activities,structural types of which are polyketides(38%),alkaloids(27%),phenols(11%),and others.This review would provide a plenty variety of promising lead halogenated compounds for drug discovery and inspire the development of new pharmaceutical agents.展开更多
基金financially supported by the National Natural Science Foundation of China(22176059,21777042,and 22076045)the authors would also like to acknowledge support from the Science and Technology Commission of Shanghai Municipality’s Yangfan Special Project(23YF1408400)the Fundamental Research Funds for the Central Universities.
文摘Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment.
文摘Ensuring the health and safety of drinking water is crucial for both nations and their citizens.Since the 20th century,the disinfection of drinking water,effectively controlling pathogens in water sources,has become one of the significant advances in public health.However,the disinfectants used in the process,such as chlorine and chlorine dioxide,react with natural organic matter in the water to produce disinfection by-products(DBPs).Most of these DBPs contain chlorine,and if the source water contains bromine or iodine,brominated or iodinated DBPs,collectively referred to as Halogenated disinfection byproducts(X-DBPs),are formed.Numerous studies have found that X-DBPs pose potential risks to human health and the environment,leading to widespread concern.Mass spectrometry has become an important means of discovering new types of X-DBPs.This paper focuses on the study of methods for analyzing X-DBPs in drinking water using mass spectrometry.
基金supported by the National Natural Science Foundation of China(20977046, 20737001) the Natural Science Foundation of Zhejiang Province(2007Y507280)
文摘In this paper we take photobacterium phosphoreum (T3) as the experimental bacteria, and determine the half-inhibitory concentration (-1gEC50) against the photobacterium phosphoreum of 16 halogenated benzenes. Using B3LYP method of DFT in the Gaussian 03 program, we obtain the structural and thermodynamic descriptors of 16 halogenated benzenes by fully-optimized calculation at the 6-311G** level. Taking the structural and thermodynamic descriptors as theoretical descriptors, the 2D QSAR model (R2 = 0.983) was established, which can be utilized to predict -lgEC50 of halogenated benzene according to the corrected linear solvation energy theory based on the experimental data of-lgECs0. In addition, the relationship between the toxicity and 3D spatial structure of the compound is studied by comparing the molecular similarity index analysis (CoMSIA) of 3D-QSAR method. By cross validation, the correlation coefficient q2 of CoMSIA model is 0.687, and the conventional correlation coefficient R2 = 0.958. The model is stable and reliable with great predictive ability. The 3D-QSAR model shows that the toxicity of halogenated benzene compound is mainly affected by the characteristics of hydrophobie field of the substituted halogens.
基金This work was supported by the National Natural Science Foundation of China (No. 20502022) and the Ph.D. Fund of Ningbo ( No. 2004A610010)
文摘Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.
基金Supported by the National Natural Science Foundation of China(Nos.21473159 and91334013)
文摘The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.
文摘Geometrical optimization and electrostatic potential calculations have been performed for a series of halogenated hydrocarbons at the HF/Gen-6d level. A number of electrostatic potentials and the statistically based structural descriptors derived from these electrostatic potentials have been obtained. Multiple linear regression analysis and artificial neural network are employed simultaneously in this paper. The result shows that the parameters derived from electrostatic 2 potentials σtot^2, V s and ∑ Vs^+, together with the molecular volume (Vine) can be used to express the quantitative structure-infinite dilution activity coefficients (γ^∞) relationship of halogenated hydrocarbons in water. The result also demonstrates that the model obtained by using BFGS quasiNewton neural network method has much better predictive capability than that from multiple linear regression. The goodness of the model has been validated through exploring the predictive power for the external test set. The model obtained via neural network may be applied to predict γ^∞ of other halogenated hydrocarbons not present in the data set.
基金The National Nature Science Foundation of China(Nos.51002090 and 50972078)the Outstanding Young Scientist Research Award Fund of Shandong Province(No.BS2010CL028)were gratefully acknowledged for financial support
文摘The halogenated boron-doped diamond (BDD) surfaces were reacted with sodium azide through a nucle- ophilic substitution reaction. The resulting azide-terminated BDD surfaces were used to trigger the "click" reaction. Because of the attractive electrochemical properties of ferrocene-containing molecules, such as fast electron transfer rates, reversible redox activities, and favorable redox potentials, we show that ferrocene derivatives can be grafted onto non-oxidized diamond surfaces by "click chemistry". These redox-active ferrocene-containing layers on a BDD surface, because of their ability to store and release charges reversibly, have the potential to be used as hybrid molecular/semiconductor memory devices.
基金financial support by the open project program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education of China(No.09HJYH04)Hunan Science & Technology Department Project(No.2009FJ3166)
文摘"One-step"method for the synthesis of secondary aliphatic amine substituted nitrobenzaldehyde was developed.In the presence of Pd catalyst,halogenated nitrobenzaldehyde could be smoothly coupled with secondary aliphatic amine to give the target product in hexamethylphosphamide(HMPT) media without the protection of aldehyde groups.
文摘A quantitative structure-property relationship (QSPR) study was suggested for the prediction of infinite dilution activity coefficients of halogenated hydrocarbons, γ∞ , in water at 298.15 K. After optimization of 3D geometry of the halogenated hydrocarbons with semi-empirical quantum chemical calculations at the AM1 level, different descriptors (1514 descriptors) were calculated by the HyperChem and Dragon softwares. A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ant colony optimization (ACO) algorithm was proposed to select the best descriptors. Then the selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the training set were obtained as 4.36% and 0.951, respectively, while the corresponding values for the test set were 5.96% and 0.929, respectively. The results showed that the applied procedure is suitable for the prediction of γ∞ of halogenated hydrocarbons in water.
文摘The capacity factors (k') of fourteen types ofhalogenated thiophenols in different phases of methanol-water eluent were determined by reversed phased high-performance liquid chromatography (RP-HPLC) and the relationships between the logarithm of capacity factor lgK' and methanol ratio ψ were analyzed. A fair linear relationship is found between lgK' and ψ, and the correlation coefficients R2 of the constructed linear equations are all greater than 0.990. Relationship between the chromatographic data lgKw' when extrapolated to pure water and n-octanol/water partition coefficient lgKow obtained by the group contribution method has shown a good linear correlation with R2= 0.956. The structure parameters of fourteen halogenated thiophenols were calculated by using DFT, and the correlation equation of lgKw' and structure parameters was obtained by using SPSS, lgKw' = -0.409 + 0.039a and R2 = 0.981, meaning that lgKw' is mainly determined by the polarizability α.
文摘Halogenated natural products(HNPs)are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known.Therefore,several persistent and bioaccumulative HNP groups,together with manmade polychlorinated biphenyls(PCBs)and polybrominated diphenyl ethers(PBDEs),were quantified in the blubber of nine sperm whales(Physeter macrocephalus)stranded on the coast of the Mediterranean Sea in Italy.The naturally occurring polybrominated hexahydroxanthene derivatives(PBHDs;sum of TetraBHD and TriBHD)were the most prominent substance class with up to 77,000 ng/g blubber.The mean PBHD content(35,800 ng/g blubber)even exceeded the one of PCBs(28,400 ng/g blubber),although the region is known to be highly contaminated with manmade contaminants.Based on mean values,Q1∼PBDEs>MeO-BDEs∼2,2′-diMeO-BB 80 and several other HNPs followed with decreasing amounts.All blubber samples contained an abundant compound whose molecular formula(C_(16)H_(19)Br_(3)O_(2))was verified using high-resolution mass spectrometry.The only plausible matching isomer was(2S,4′S,9R,9′S)-2,7-dibromo-4′-bromomethyl-1,1-dimethyl-2,3,4,4′,9,9′-9,9′-hexahydro-1H-xanthen-9-ol(OH-TriBHD),a hydroxylated secondary metabolite previously detected together with TriBHD and TetraBHD in a sponge known to be a natural producer of PBHDs.The estimated mean amount of the presumed OH-TriBHD was 3000 ng/g blubber,which is unexpectedly high for hydroxylated compounds in the lipids of marine mammals.
基金supported by the NSFC-JSPS joint research program(No.51961145202)the National Natural Science Foundation of China(No.52370163,52321005,and 52293443)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS42).
文摘Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.
基金funded by the National Nature Science Foundation of China(Nos.U23A2056,42277267,42321003)Guangdong Major Project of Basic and Applied Basic Research(2023B0303000007)+1 种基金Guangdong Foundation for the Program of Science and Technology Research(Nos.2023B1212060049)This is a contribution No.IS-3527 from GIGCAS.
文摘In this study,we conducted exposure experiments on egg-laying hens to explore the toxicokinetics and maternal transfer characteristics of lipophilic and proteinophilic halogenated organic pollutants(HOPs).The lipophilic HOPs included polychlorinated biphenyls(PCBs),polybrominated diphenyl ethers(PBDEs),and dechlorane plus(DPs),while the proteinophilic HOPs included perfluorocarboxylic acids(PFCAs).The results revealed that most of lipophilic HOPs exhibit lower depuration rate(kd)than PFCAs.The kd of lipophilic HOPs correlated with the octanol−water partition coefficient(log KOW)values in a V-shaped curve,whereas that of PFCAs correlated with the protein−water partition coefficient(log KPW)values in an inverted V-shaped curve.The depuration rate,rather than the uptake rate,was a leading factor in determining the bioaccumulation potential of HOPs in hens.Although the dominant factors determining the tissue distribution of the two types of compounds were explicit(fats vs phospholipids),chemical-specific tissue distribution was still observed.The egg-maternal concentration ratio was dependent on the exposure status,concentration,and maternal tissue choice.Using a single maternal tissue may not be an appropriate method for assessing chemical maternal transfer potential.PFCAs have a greater maternal transfer potential(>80%of the total body burden)than lipophilic HOPs(approximately 30%for BDE209 and DPs,and less than 10%for the others).Their lipophilic and partly proteinophilic nature makes the toxicokinetics and maternal transfer characteristics of BDE209 and DPs different from those of other lipophilic HOPs.These findings are crucial for enhancing our understanding of the behavior and fate of HOPs in egg-laying hens.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.buctrc202103)the National Natural Science Foundation of China(Nos.21975263,22171019,52373170)+2 种基金the Project of the China Petroleum and Chemical Corporation(No.222131)the Open Project Programs of Wuhan National Laboratory for Optoelectronics,China(No.2021WNLOKF005)the Project of the State Key Laboratory of Fine Chemicals(Dalian University of Technology),China(No.KF2201).
文摘Thienoacenes is one of most important groups of semiconducting materials due to the high stability and superior mobility.However,there are scarce studies on the emission properties of thienoacenes to date.Herein,we synthesized fluorinated and chlorinated dibenzo[d,d’]thieno[3,2-b;4,5-b’]dithiophenes(DBTDTs)derivatives F6-DBTDT and Cl6-DBTDT by sulfoxide cyclization,significantly lowering the energy levels relative to the parent compound DBTDT.According to single crystal structure analysis,F6-DBTDT molecules adopt one-dimensional slipped stacking with closeπ-πinteractions of 3.43Å(1Å=0.1 nm),which is different from the parent compound DBTDT with herringbone stacking motif.Interestingly,the halogenated DBTDT derivatives exhibit enhanced emission properties both in solution and in the solid state,opening up possiblities to improve photoluminescence of thienoacences by halogenation.
基金We acknowledge the financial support provided by the National Natural Science Foundation of China(No.51973043)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36000000).
文摘Halogenated thiophenes are generally used units for constructing organic semiconductor materials for photovoltaic applications.Here,we introduced thiophene,2-bromothiophene,and 2-chlorothiophene units to the central core of quinoxaline-based acceptors and obtained three acceptors,Qx-H,Qx-Br,and Qx-Cl,respectively.Compared with Qx-H,Qx-Br and Qx-Cl showed enhanced absorption,down-shifted energy levels,improved crystallinity,and reduced energy disorder.The improved crystallinity significantly optimized the blend morphology,leading to efficient charge generation and transport and,therefore,less bimolecular recombination.Eventually,PM6:Qx-Br-based devices exhibited an outstanding power conversion efficiency of 17.42%with a high open-circuit voltage(VOC)of 0.915 V.Furthermore,Y6 was introduced into the PM6:Qx-Br binary system to improve the light utilization,and the resulting ternary devices delivered a high PCE of 18.36%.This study demonstrated the great potential of halogenated thiophene substitution in quinoxaline-based acceptors for building high-performance organic solar cell acceptor materials.
基金supported by the National Natural Science Foundation of China(No.22108264).
文摘Halogenation of N-cinnamylbenzamides and N-[(2H-chromen-3-yl)methyl]benzamides using electrophilic halogen source was reported.Various halogenated dihydro-1,3-oxazine derivatives(45 examples)were synthesized in high to excellent yields(up to 98%yields),as well as halogenated dihydrochromeno-1,3-oxazine derivatives(56 examples,up to 96%yields).The properties of mild conditions,metal-free and high efficiency of the reaction made it a promising strategy in future applications for the construction of carbon-halogen(fluorine,F;chlorine,Cl;bromine,Br;iodine,I)bond and 1,3-oxazine derivatives.
基金supported by the National Natural Science Foundation of China(Nos.20976164,21176221 and 21136001)National Basic Research Program of China(973 Program)(Nos. 2011CB710803,2013CB733500)Zhejiang Provincial Natural Science Foundation of China(No.LY12B03005)
文摘This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C catalyst, minor amount of water reduces the induction time, increases the reaction rate and reaction TOFs. Water might enhance the diffusion, adsorption and dissociation of H2 on Pd catalysts.
基金This work was supported by the National Key R&D Program of China(Grant No.2021YFC2103704)the National Natural Science Foundation of China(Grant Nos.21878266 and 22078288)+1 种基金the Science and Technology Research Project of Henan Province(Grant No.222300420527)Program of Processing and Efficient Utilization of Biomass Resources of Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022007).
文摘Ultra-dispersed Ni nanoparticles(7.5 nm)on nitrogen-doped carbon nanoneedles(Ni@NCNs)were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines.Two different crystallization methods(stirring and static)were compared and the optimal pyrolysis temperature was explored.Ni@NCNs were systematically characterized by wide analytical techniques.In the hydrogenation of p-chloronitrobenzene,Ni@NCNs-600(pyrolyzed at 600°C)exhibited extraordinarily high performance with 77.9 h^(–1)catalytic productivity and>99%p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions(90°C,1.5 MPa H2),showing obvious superiority compared with reported Ni-based catalysts.Notably,the reaction smoothly proceeded at room temperature with full conversion and>99%selectivity.Moreover,Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups(halogen,nitrile,keto,carboxylic,etc.),and could be easily recycled by magnetic separation and reused for 5 times without deactivation.The adsorption tests showed that the preferential adsorption of–NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene,thus achieving high p-chloroaniline selectivity.While the high activity can be attributed to high Ni dispersion,special morphology,and rich pore structure of the catalyst.
基金financially supported by the Natural Science Foundation of Guangxi Province(Nos.2020GXNSFGA297002,2021GXNSFDA075010,2020GXNSFBA159001)the Special Fund for Bagui Scholars of Guangxi Province(Y.Liu),the National Natural Science Foundation of China(Nos.22007019,U20A20101)+1 种基金the Specific Research Project of Guangxi for Research Bases and Talents(AD20297003)the Open Project of CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB20211005).
文摘Natural products derived from marine microorganisms have been received great attention as a potential source of new compound entities for drug discovery.The unique marine environment brings us a large group of halogen-containing natural products with abundant biological functionality and good drugability.Meanwhile,biosynthetically halogenated reactions are known as a significant strategy used to increase the pharmacological activities and pharmacokinetic properties of compounds.Given that a tremendous increase in the number of new halogenated compounds from marine microorganisms in the last five years,it is necessary to summarize these compounds with their diverse structures and promising bioactivities.In this review,we have summarized the chemistry,biosynthesis(related halogenases),and biological activity of a total of 316 naturally halogenated compounds from marine microorganisms covering the period of 2015 to May 2021.Those reviewed chlorinated and brominated compounds with the ratio of 9:1 were predominantly originated from 36 genera of fungi(62%)and 9 bacterial strains(38%)with cytotoxic,antibacterial,and enzyme inhibitory activities,structural types of which are polyketides(38%),alkaloids(27%),phenols(11%),and others.This review would provide a plenty variety of promising lead halogenated compounds for drug discovery and inspire the development of new pharmaceutical agents.