The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improv...The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%.展开更多
基金supported by Basic scientific research funding project of universities directly under the Inner Mongolia Autonomous Region(Grant No.JY20230077)the Natural Science Foundation of Inner Mongolia Funded Project(Grant No.2022FX01)+1 种基金Inner Mongolia Nature Joint Science Fund(Grant No.2023LHMS05023)Qiqihar University Educational Science Research Project(Grant No.GJQTYB202320).
文摘The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%.