期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recognition of Handwritten Words from Digital Writing Pad Using MMU-SNet
1
作者 V.Jayanthi S.Thenmalar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3551-3564,共14页
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognit... In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognition for texts written from digital writing pad through text file conversion are challen-ging due to stylus pressure,writing on glass frictionless surfaces,and being less skilled in short writing,alphabet size,style,carved symbols,and orientation angle variations.Stylus pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines,angles,curves,and bends.The small change in dots,curves,and bends in the Tamil alphabet leads to error in recognition and changes the meaning of the words because of wrong alphabet conversion.However,handwritten English word recognition and conversion of text files from a digital writing pad are performed through various algorithms such as Support Vector Machine(SVM),Kohonen Neural Network(KNN),and Convolutional Neural Network(CNN)for offline and online alphabet recognition.The proposed algorithms are compared with above algorithms for Tamil word recognition.The proposed MMU-SNet method has achieved good accuracy in predicting text,about 96.8%compared to other traditional CNN algorithms. 展开更多
关键词 digital handwritten writing pad tamil text recognition SYLLABLE DIALECT
下载PDF
基于改进粒子群算法的隐马尔可夫模型训练 被引量:11
2
作者 朱嘉瑜 高鹰 《计算机工程与设计》 CSCD 北大核心 2010年第1期157-160,共4页
针对隐马尔可夫模型传统训练算法易收敛于局部极值的问题,提出一种带极值扰动的自适应调整惯性权重和加速系数的粒子群算法,将改进后的粒子群优化算法引入到隐马尔可夫模型的训练中,分别对隐马尔可夫模型的状态数与参数进优化。通过对... 针对隐马尔可夫模型传统训练算法易收敛于局部极值的问题,提出一种带极值扰动的自适应调整惯性权重和加速系数的粒子群算法,将改进后的粒子群优化算法引入到隐马尔可夫模型的训练中,分别对隐马尔可夫模型的状态数与参数进优化。通过对手写数字识别的实验说明,提出的基于改进粒子群优化算法的隐马尔可夫模型训练算法与传统隐马尔可夫模型训练算法Baum-Welch算法相比,能有效地跳出局部极值,从而使训练后的隐马尔可夫模型具有较高的识别能力。 展开更多
关键词 粒子群优化算法 优化算法 隐马尔可夫模型 隐马尔可夫模型优化 手写数字识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部