Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T...Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets.展开更多
Chip surface character recognition is an important part of quality inspection in the field of microelectronics manufacturing.By recognizing the character information on the chip,automated production,quality control,an...Chip surface character recognition is an important part of quality inspection in the field of microelectronics manufacturing.By recognizing the character information on the chip,automated production,quality control,and data collection and analysis can be achieved.This article studies a chip surface character recognition method based on the OpenCV vision library.Firstly,the obtained chip images are preprocessed.Secondly,the template matching method is used to locate the chip position.In addition,the surface characters on the chip are individually segmented,and each character image is extracted separately.Finally,a Support Vector Machine(SVM)is used to classify and recognize characters.The results show that this method can accurately recognize the surface characters of chips and meet the requirements of chip quality inspection.展开更多
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin...This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.展开更多
This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingl...This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems.展开更多
The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities...The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches.展开更多
Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Netw...Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments.展开更多
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe...Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.展开更多
This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go...This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.展开更多
Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detec...Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detection and recognition.In the detection stage,an improved Differentiable Binarization Network(DBNet)framework is introduced to detect Yi characters,in which the Omni-dimensional Dynamic Convolution(ODConv)is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features,thereby improving the accuracy of Yi character detection.Then,the feature pyramid network fusion module is used to further extract Yi character image features,improving target recognition at different scales.Further,the previously generated feature map is passed through a head network to produce two maps:a probability map and an adaptive threshold map of the same size as the original map.These maps are then subjected to a differentiable binarization process,resulting in an approximate binarization map.This map helps to identify the boundaries of the text boxes.Finally,the text detection box is generated after the post-processing stage.In the recognition stage,an improved lightweight MobileNetV3 framework is used to recognize the detect character regions,where the original Squeeze-and-Excitation(SE)block is replaced by the efficient Shuffle Attention(SA)that integrates spatial and channel attention,improving the accuracy of Yi characters recognition.Meanwhile,the use of depth separable convolution and reversible residual structure can reduce the number of parameters and computation of the model,so that the model can better understand the contextual information and improve the accuracy of text recognition.The experimental results illustrate that the proposed method achieves good results in detecting and recognizing Yi characters,with detection and recognition accuracy rates of 97.5%and 96.8%,respectively.And also,we have compared the detection and recognition algorithms proposed in this paper with other typical algorithms.In these comparisons,the proposed model achieves better detection and recognition results with a certain reliability.展开更多
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is...6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A f...The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A fast recognition system for isolated printed characters using center of gravity”, LAP LAMBERT Academic Publishing 2011, ISBN: 978-38465-0002-6), but here we add using principal axis in order to make the algorithm rotation invariant. In my previous work which is published in LAP LAMBERT, I face a big problem that when the character is rotated I can’t recognize the character. So this adds constrain on the document to be well oriented but here I use the principal axis in order to unify the orientation of the character set and the characters in the scanned document. The algorithm can be applied for any isolated character such as Latin, Chinese, Japanese, and Arabic characters but it has been applied in this paper for Arabic characters. The approach uses normalized and isolated characters of the same size and extracts an image signature based on the center of gravity of the character after making the character principal axis vertical, and then the system compares these values to a set of signatures for typical characters of the set. The system then provides the closeness of match to all other characters in the set.展开更多
An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer b...An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer bottles. The system consists of a hardware subsystem, including a rotating device, CCD, 16 mm focus lens, a frame grabber card, a penetrating lighting and a computer, and a software subsystem. The software subsystem performs pretreatment, character segmentation and character recognition. In the pretreatment, the original image is filtered with preset threshold to remove isolated spots. Then the horizontal projection and the vertical projection are used respectively to retrieve the character segmentation. Subsequently, the configuration characteristic algorithm is applied to recognize the characters. The experimental results demonstrate that this system can recognize the characters on beer bottles accurately and effectively; the algorithm is proven fast, stable and robust, making it suitable in the industrial environment.展开更多
Naxi Dongba hieroglyphs of China are the only living hieroglyphs world widely which still in use.There are thousands of manuscripts written in Dongba hieroglyphs scattering in different counties for history reason.For...Naxi Dongba hieroglyphs of China are the only living hieroglyphs world widely which still in use.There are thousands of manuscripts written in Dongba hieroglyphs scattering in different counties for history reason.For culture protection and inheritance,those manuscripts are in urgent need to be recognized and organized quickly.This paper focuses on the recognition of Naxi Dongba hieroglyphs by using coarse grid method to extract features and using support vector machine to classify.The designed Experiment shows that the method performs better than the commonly used clustering method in recognition accuracy in recognition of Naxi Dongba hieroglyphs.This method also provides some experience for recognition of other hieroglyphs.展开更多
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and...This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.展开更多
This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simpli...This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simplify fingertip detection and to enhance recognition accuracy. For each character stroke, 8 sample points (including start and end points) are recorded. 7 tangent angles between consecutive sampled points are also recorded as features. In addition, 3 features angles are extracted: angles of the triangle consisting of the start point, end point and average point of all (8 total) sampled points. According to these key feature angles, a simple template matching K-nearest-neighbor classifier is applied to distinguish each character stroke. Experimental result showed that the system can successfully recognize fingertip-writing character strokes of digits and small lower case letter alphabets with an accuracy of almost 100%. Overall, the proposed finger-tip-writing recognition system provides an easy-to-use and accurate visual character input method.展开更多
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch...Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.展开更多
Korean characters consist of 2 dimensional distributed consonantal and vowel graphemes. The purpose of reducing the 2 dimensional characteristics of Korean characters to linear arrangements at early stage of character...Korean characters consist of 2 dimensional distributed consonantal and vowel graphemes. The purpose of reducing the 2 dimensional characteristics of Korean characters to linear arrangements at early stage of character recognition is to decrease the complexity of following recognition task. By defining the identification codes for the vowel graphemes of Korean characters, the rules for combination of vowel graphemes are established, and a recognition algorithm based on the rules for combination of vowel graphemes, is therefore proposed for vertical vowel graphemes. The algorithm has been proved feasilbe through demonstrating simulations.展开更多
The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by ...The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by stroke Joinings. The techniques of data pre-processing and stroke segment extraction have been described. In extracting stroke segment, not only the characteristics of the stroke itself, but also its absolute positions as well as relative positions with other strokes in the character have been taken into account.The primitive features for recognition were extracted under these comprehensive considerations.展开更多
文摘Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets.
基金Henan Province Science and Technology Research Project“Key Technologies for Intelligent Recognition of Chip Surface Defects Based on Machine Vision”(Project No.242102210161).
文摘Chip surface character recognition is an important part of quality inspection in the field of microelectronics manufacturing.By recognizing the character information on the chip,automated production,quality control,and data collection and analysis can be achieved.This article studies a chip surface character recognition method based on the OpenCV vision library.Firstly,the obtained chip images are preprocessed.Secondly,the template matching method is used to locate the chip position.In addition,the surface characters on the chip are individually segmented,and each character image is extracted separately.Finally,a Support Vector Machine(SVM)is used to classify and recognize characters.The results show that this method can accurately recognize the surface characters of chips and meet the requirements of chip quality inspection.
文摘This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.
文摘This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(168/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R263),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR32)The author would like to thank the Deanship of Scientific Research at Shaqra University for supporting this work。
文摘The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches.
文摘Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments.
基金supported by science and technology projects of Gansu State Grid Corporation of China(52272220002U).
文摘Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy.
基金The results and knowledge included herein have been obtained owing to support from the following institutional grant.Internal grant agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,Grant No.2023A0004-“Text Segmentation Methods of Historical Alphabets in OCR Development”.https://iga.pef.czu.cz/.Funds were granted to T.Novák,A.Hamplová,O.Svojše,and A.Veselýfrom the author team.
文摘This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
基金The work was supported by the National Natural Science Foundation of China(61972062,62306060)the Basic Research Project of Liaoning Province(2023JH2/101300191)+1 种基金the Liaoning Doctoral Research Start-Up Fund Project(2023-BS-078)the Dalian Academy of Social Sciences(2023dlsky028).
文摘Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition,we present a deep learning-based approach for Yi character detection and recognition.In the detection stage,an improved Differentiable Binarization Network(DBNet)framework is introduced to detect Yi characters,in which the Omni-dimensional Dynamic Convolution(ODConv)is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features,thereby improving the accuracy of Yi character detection.Then,the feature pyramid network fusion module is used to further extract Yi character image features,improving target recognition at different scales.Further,the previously generated feature map is passed through a head network to produce two maps:a probability map and an adaptive threshold map of the same size as the original map.These maps are then subjected to a differentiable binarization process,resulting in an approximate binarization map.This map helps to identify the boundaries of the text boxes.Finally,the text detection box is generated after the post-processing stage.In the recognition stage,an improved lightweight MobileNetV3 framework is used to recognize the detect character regions,where the original Squeeze-and-Excitation(SE)block is replaced by the efficient Shuffle Attention(SA)that integrates spatial and channel attention,improving the accuracy of Yi characters recognition.Meanwhile,the use of depth separable convolution and reversible residual structure can reduce the number of parameters and computation of the model,so that the model can better understand the contextual information and improve the accuracy of text recognition.The experimental results illustrate that the proposed method achieves good results in detecting and recognizing Yi characters,with detection and recognition accuracy rates of 97.5%and 96.8%,respectively.And also,we have compared the detection and recognition algorithms proposed in this paper with other typical algorithms.In these comparisons,the proposed model achieves better detection and recognition results with a certain reliability.
基金supported by the Inner Mongolia Natural Science Fund Project(2019MS06013)Ordos Science and Technology Plan Project(2022YY041)Hunan Enterprise Science and Technology Commissioner Program(2021GK5042).
文摘6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.
文摘The purpose of this paper is to propose a new multi stage algorithm for the recognition of isolated characters. It was similar work done before using only the center of gravity (This paper is extended version of “A fast recognition system for isolated printed characters using center of gravity”, LAP LAMBERT Academic Publishing 2011, ISBN: 978-38465-0002-6), but here we add using principal axis in order to make the algorithm rotation invariant. In my previous work which is published in LAP LAMBERT, I face a big problem that when the character is rotated I can’t recognize the character. So this adds constrain on the document to be well oriented but here I use the principal axis in order to unify the orientation of the character set and the characters in the scanned document. The algorithm can be applied for any isolated character such as Latin, Chinese, Japanese, and Arabic characters but it has been applied in this paper for Arabic characters. The approach uses normalized and isolated characters of the same size and extracts an image signature based on the center of gravity of the character after making the character principal axis vertical, and then the system compares these values to a set of signatures for typical characters of the set. The system then provides the closeness of match to all other characters in the set.
基金This project is supported by Municipal Science Foundation of Wuhan(No.T20001101005).
文摘An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer bottles. The system consists of a hardware subsystem, including a rotating device, CCD, 16 mm focus lens, a frame grabber card, a penetrating lighting and a computer, and a software subsystem. The software subsystem performs pretreatment, character segmentation and character recognition. In the pretreatment, the original image is filtered with preset threshold to remove isolated spots. Then the horizontal projection and the vertical projection are used respectively to retrieve the character segmentation. Subsequently, the configuration characteristic algorithm is applied to recognize the characters. The experimental results demonstrate that this system can recognize the characters on beer bottles accurately and effectively; the algorithm is proven fast, stable and robust, making it suitable in the industrial environment.
基金supported by Major Programs of National Social Science Funds of China(12&ZD234)supported by Education Committee of Beijing(71E1610959)
文摘Naxi Dongba hieroglyphs of China are the only living hieroglyphs world widely which still in use.There are thousands of manuscripts written in Dongba hieroglyphs scattering in different counties for history reason.For culture protection and inheritance,those manuscripts are in urgent need to be recognized and organized quickly.This paper focuses on the recognition of Naxi Dongba hieroglyphs by using coarse grid method to extract features and using support vector machine to classify.The designed Experiment shows that the method performs better than the commonly used clustering method in recognition accuracy in recognition of Naxi Dongba hieroglyphs.This method also provides some experience for recognition of other hieroglyphs.
文摘This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.
文摘This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simplify fingertip detection and to enhance recognition accuracy. For each character stroke, 8 sample points (including start and end points) are recorded. 7 tangent angles between consecutive sampled points are also recorded as features. In addition, 3 features angles are extracted: angles of the triangle consisting of the start point, end point and average point of all (8 total) sampled points. According to these key feature angles, a simple template matching K-nearest-neighbor classifier is applied to distinguish each character stroke. Experimental result showed that the system can successfully recognize fingertip-writing character strokes of digits and small lower case letter alphabets with an accuracy of almost 100%. Overall, the proposed finger-tip-writing recognition system provides an easy-to-use and accurate visual character input method.
基金Supported by Seminar of National Social Funds Project(12&ZD234)
文摘Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.
文摘Korean characters consist of 2 dimensional distributed consonantal and vowel graphemes. The purpose of reducing the 2 dimensional characteristics of Korean characters to linear arrangements at early stage of character recognition is to decrease the complexity of following recognition task. By defining the identification codes for the vowel graphemes of Korean characters, the rules for combination of vowel graphemes are established, and a recognition algorithm based on the rules for combination of vowel graphemes, is therefore proposed for vertical vowel graphemes. The algorithm has been proved feasilbe through demonstrating simulations.
文摘The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by stroke Joinings. The techniques of data pre-processing and stroke segment extraction have been described. In extracting stroke segment, not only the characteristics of the stroke itself, but also its absolute positions as well as relative positions with other strokes in the character have been taken into account.The primitive features for recognition were extracted under these comprehensive considerations.