期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
KurdSet: A Kurdish Handwritten Characters Recognition Dataset Using Convolutional Neural Network
1
作者 Sardar Hasen Ali Maiwan Bahjat Abdulrazzaq 《Computers, Materials & Continua》 SCIE EI 2024年第4期429-448,共20页
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo... Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset. 展开更多
关键词 CNN models Kurdish handwritten recognition KurdSet dataset Arabic handwritten recognition DenseNet121 model InceptionV3 model Xception model
下载PDF
Development of a Lightweight Model for Handwritten Dataset Recognition: Bangladeshi City Names in Bangla Script
2
作者 MdMahbubur Rahman Tusher Fahmid Al Farid +6 位作者 MdAl-Hasan Abu Saleh Musa Miah Susmita Roy Rinky Mehedi Hasan Jim Sarina Mansor MdAbdur Rahim Hezerul Abdul Karim 《Computers, Materials & Continua》 SCIE EI 2024年第8期2633-2656,共24页
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise t... The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services. 展开更多
关键词 handwritten recognition Bangladeshi city names Bangla handwritten city name automated postal services
下载PDF
Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model
3
作者 Abdelwahed Motwakel Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Ayman Yafoz Mahmoud Othman Abu Sarwar Zamani Ishfaq Yaseen Amgad Atta Abdelmageed 《Computer Systems Science & Engineering》 2024年第5期1387-1403,共17页
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa... Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively. 展开更多
关键词 Arabic language handwritten character recognition deep learning CLASSIFICATION parameter tuning
下载PDF
Segmentation-Free Recognition Algorithm Based on Deep Learning for Handwritten Text Image
4
作者 Ge Peng 《Journal of Artificial Intelligence and Technology》 2024年第2期169-178,共10页
Segmentation-based offline handwritten character recognition algorithms suffered from the segmenting difficulty of interleaving and touching in handwritten manuscripts.To tackle the problem,a segmentation-free recogni... Segmentation-based offline handwritten character recognition algorithms suffered from the segmenting difficulty of interleaving and touching in handwritten manuscripts.To tackle the problem,a segmentation-free recognition algorithm based on deep learning network is proposed in this paper.The network consists of four neural layers,including input layer for image preprocessing,convolutional neural networks(CNNs)layer for feature extraction,bidirectional long-short term network(BDLSTM)layer for sequence prediction,and connectionist temporal classification(CTC)layer for text sequence alignment and classification.Besides,a novel data processing method is performed for data length equalization.Based on this,groups of experiments,based on six typical databases,involved in evaluation indicators of character correct rate,training time cost,storage space cost,and testing time cost are carried out.The experimental results show that the proposed algorithm has better performances in accuracy and efficiency than other classical algorithms. 展开更多
关键词 deep learning image processing segmentation-free handwritten image recognition sequence labeling
下载PDF
Handwritten digit recognition based on ghost imaging with deep learning 被引量:3
5
作者 Xing He Sheng-Mei Zhao Le Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期367-372,共6页
We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cos... We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the classification.The results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is enhanced.Compared with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality property.The proposed scheme provides a promising way for remote sensing. 展开更多
关键词 ghost imaging handwritten digit recognition ghost handwritten recognition deep learning
下载PDF
Improving CNN-BGRU Hybrid Network for Arabic Handwritten Text Recognition 被引量:1
6
作者 Sofiene Haboubi Tawfik Guesmi +4 位作者 Badr M Alshammari Khalid Alqunun Ahmed S Alshammari Haitham Alsaif Hamid Amiri 《Computers, Materials & Continua》 SCIE EI 2022年第12期5385-5397,共13页
Handwriting recognition is a challenge that interests many researchers around the world.As an exception,handwritten Arabic script has many objectives that remain to be overcome,given its complex form,their number of f... Handwriting recognition is a challenge that interests many researchers around the world.As an exception,handwritten Arabic script has many objectives that remain to be overcome,given its complex form,their number of forms which exceeds 100 and its cursive nature.Over the past few years,good results have been obtained,but with a high cost of memory and execution time.In this paper we propose to improve the capacity of bidirectional gated recurrent unit(BGRU)to recognize Arabic text.The advantages of using BGRUs is the execution time compared to other methods that can have a high success rate but expensive in terms of time andmemory.To test the recognition capacity of BGRU,the proposed architecture is composed by 6 convolutional neural network(CNN)blocks for feature extraction and 1 BGRU+2 dense layers for learning and test.The experiment is carried out on the entire database of institut für nachrichtentechnik/ecole nationale d’ingénieurs de Tunis(IFN/ENIT)without any preprocessing or data selection.The obtained results show the ability of BGRUs to recognize handwritten Arabic script. 展开更多
关键词 Arabic handwritten script handwritten text recognition deep learning IFN/ENIT bidirectional GRU neural network
下载PDF
Research on Handwritten Chinese Character Recognition Based on BP Neural Network 被引量:1
7
作者 Zihao Ning 《Modern Electronic Technology》 2022年第1期12-32,共21页
The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object ... The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results. 展开更多
关键词 Pattern recognition handwritten Chinese character recognition BP neural network
下载PDF
Recognition of Urdu Handwritten Alphabet Using Convolutional Neural Network (CNN)
8
作者 Gulzar Ahmed Tahir Alyas +4 位作者 Muhammad Waseem Iqbal Muhammad Usman Ashraf Ahmed Mohammed Alghamdi Adel A.Bahaddad Khalid Ali Almarhabi 《Computers, Materials & Continua》 SCIE EI 2022年第11期2967-2984,共18页
Handwritten character recognition systems are used in every field of life nowadays,including shopping malls,banks,educational institutes,etc.Urdu is the national language of Pakistan,and it is the fourth spoken langua... Handwritten character recognition systems are used in every field of life nowadays,including shopping malls,banks,educational institutes,etc.Urdu is the national language of Pakistan,and it is the fourth spoken language in the world.However,it is still challenging to recognize Urdu handwritten characters owing to their cursive nature.Our paper presents a Convolutional Neural Networks(CNN)model to recognize Urdu handwritten alphabet recognition(UHAR)offline and online characters.Our research contributes an Urdu handwritten dataset(aka UHDS)to empower future works in this field.For offline systems,optical readers are used for extracting the alphabets,while diagonal-based extraction methods are implemented in online systems.Moreover,our research tackled the issue concerning the lack of comprehensive and standard Urdu alphabet datasets to empower research activities in the area of Urdu text recognition.To this end,we collected 1000 handwritten samples for each alphabet and a total of 38000 samples from 12 to 25 age groups to train our CNN model using online and offline mediums.Subsequently,we carried out detailed experiments for character recognition,as detailed in the results.The proposed CNN model outperformed as compared to previously published approaches. 展开更多
关键词 Urdu handwritten text recognition handwritten dataset convolutional neural network artificial intelligence machine learning deep learning
下载PDF
A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks
9
作者 Nagwa Elaraby Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2023年第1期1837-1854,共18页
Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Netw... Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments. 展开更多
关键词 handwritten character recognition(HCR) few-shot learning zero-shot learning deep metric learning transfer learning contrastive loss Chars74K datasets
下载PDF
AN ADAPTIVELY TRAINED KERNEL-BASED NONLINEAR REPRESENTOR FOR HANDWRITTEN DIGIT CLASSIFICATION 被引量:12
10
作者 Liu Benyong Zhang Jing 《Journal of Electronics(China)》 2006年第3期379-383,共5页
In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recentl... In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recently presented nonlinear classifier for optimal pattern representation, so that its generalization ability may be evaluated in time-variant situation and a sparser representation is obtained for computationally intensive tasks. The addressed techniques are applied to handwritten digit classification to illustrate the feasibility for pattern recognition. 展开更多
关键词 Pattern recognition handwritten digit recognition Incremental learning Sparse representation Kernel-based Nonlinear Representor (KNR)
下载PDF
Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition
11
作者 Mohammed Maray Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Saeed Masoud Alshahrani Najm Alotaibi Sana Alazwari Mahmoud Othman Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期5467-5482,共16页
The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities... The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches. 展开更多
关键词 Arabic language handwritten character recognition deep learning feature extraction hyperparameter tuning
下载PDF
An Efficient Hybrid Model for Arabic Text Recognition
12
作者 Hicham Lamtougui Hicham El Moubtahij +1 位作者 Hassan Fouadi Khalid Satori 《Computers, Materials & Continua》 SCIE EI 2023年第2期2871-2888,共18页
In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and effici... In recent years,Deep Learning models have become indispensable in several fields such as computer vision,automatic object recognition,and automatic natural language processing.The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field,especially for the Arabic language,which,compared to other languages,has a dearth of published works.In this work,we presented an efficient and new system for offline Arabic handwritten text recognition.Our new approach is based on the combination of a Convolutional Neural Network(CNN)and a Bidirectional Long-Term Memory(BLSTM)followed by a Connectionist Temporal Classification layer(CTC).Moreover,during the training phase of the model,we introduce an algorithm of data augmentation to increase the quality of data.Our proposed approach can recognize Arabic handwritten texts without the need to segment the characters,thus overcoming several problems related to this point.To train and test(evaluate)our approach,we used two Arabic handwritten text recognition databases,which are IFN/ENIT and KHATT.The Experimental results show that our new approach,compared to other methods in the literature,gives better results. 展开更多
关键词 Deep learning arabic handwritten text recognition convolutional neural network(CNN) bidirectional long-term memory(BLSTM) connectionist temporal classification(CTC)
下载PDF
Multimodal Dependence Attention and Large-Scale Data Based Offline Handwritten Formula Recognition
13
作者 刘汉超 董兰芳 张信明 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第3期654-670,共17页
Offline handwritten formula recognition is a challenging task due to the variety of handwritten symbols and two-dimensional formula structures.Recently,the deep neural network recognizers based on the encoder-decoder ... Offline handwritten formula recognition is a challenging task due to the variety of handwritten symbols and two-dimensional formula structures.Recently,the deep neural network recognizers based on the encoder-decoder frame-work have achieved great improvements on this task.However,the unsatisfactory recognition performance for formulas with long LTeX strings is one shortcoming of the existing work.Moreover,lacking sufficient training data also limits the capability of these recognizers.In this paper,we design a multimodal dependence attention(MDA)module to help the model learn visual and semantic dependencies among symbols in the same formula to improve the recognition perfor-mance of the formulas with long LTeX strings.To alleviate overfitting and further improve the recognition performance,we also propose a new dataset,Handwritten Formula Image Dataset(HFID),which contains 25620 handwritten formula images collected from real life.We conduct extensive experiments to demonstrate the effectiveness of our proposed MDA module and HFID dataset and achieve state-of-the-art performances,63.79%and 65.24%expression accuracy on CROHME 2014 and CROHME 2016,respectively. 展开更多
关键词 handwritten formula recognition multimodal dependence attention semantic dependence visual dependence handwritten Formula Image Dataset
原文传递
Kernel principal component analysis network for image classification 被引量:5
14
作者 吴丹 伍家松 +3 位作者 曾瑞 姜龙玉 Lotfi Senhadji 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期469-473,共5页
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the d... In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation. 展开更多
关键词 deep learning kernel principal component analysis net(KPCANet) principal component analysis net(PCANet) face recognition object recognition handwritten digit recognition
下载PDF
Part-based methods for handwritten digit recognition 被引量:4
15
作者 Song WANG Seiichi UCHIDA +1 位作者 Marcus LIWICKI Yaokai FENG 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第4期514-525,共12页
In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and rec... In this paper, we intensively study the behavior of three part-based methods for handwritten digit recognition. The principle of the proposed methods is to represent a handwritten digit image as a set of parts and recognize the image by aggregating the recognition results of individual parts. Since part-based methods do not rely on the global structure of a character, they are expected to be more robust against various delormations which may damage the global structure. The proposed three methods are based on the same principle but different in their details, for example, the way of aggregating the individual results. Thus, those methods have different performances. Experimental results show that even the simplest part-based method can achieve recognition rate as high as 98.42% while the improved one achieved 99.15%, which is comparable or even higher than some state-of-the-art method. This result is important because it reveals that characters can be recognized without their global structure. The results also show that the part-based method has robustness against deformations which usually appear in handwriting. 展开更多
关键词 handwritten digit recognition local features part-based method
原文传递
Parallel compact integration in handwritten Chinese character recognition 被引量:1
16
作者 WANGChunheng XIAOBaihua DAIRuwei 《Science in China(Series F)》 2004年第1期89-96,共8页
In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is appl... In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification. 展开更多
关键词 handwritten Chinese character recognition (HCCR) METASYNTHESIS multi-layer perceptron (MLP) compact MLP network classifier supervised learning.
原文传递
Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
17
作者 Weihao Li Xiukai Lan +3 位作者 Xionghua Liu Enze Zhang Yongcheng Deng Kaiyou Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期143-148,共6页
Current-induced multilevel magnetization switching in ferrimagnetic spintronic devices is highly pursued for the application in neuromorphic computing.In this work,we demonstrate the switching plasticity in Co/Gd ferr... Current-induced multilevel magnetization switching in ferrimagnetic spintronic devices is highly pursued for the application in neuromorphic computing.In this work,we demonstrate the switching plasticity in Co/Gd ferrimagnetic multilayers where the binary states magnetization switching induced by spin–orbit toque can be tuned into a multistate one as decreasing the domain nucleation barrier.Therefore,the switching plasticity can be tuned by the perpendicular magnetic anisotropy of the multilayers and the in-plane magnetic field.Moreover,we used the switching plasticity of Co/Gd multilayers for demonstrating spike timing-dependent plasticity and sigmoid-like activation behavior.This work gives useful guidance to design multilevel spintronic devices which could be applied in high-performance neuromorphic computing. 展开更多
关键词 switching plasticity compensated ferrimagnet spin-orbit torque spike timing-dependent plasticity sigmoidal neuron handwritten digits recognition neuromorphic computing
下载PDF
Synthetic Data Generation and Shuffled Multi-Round Training Based Offline Handwritten Mathematical Expression Recognition
18
作者 Lan-Fang Dong Han-Chao Liu Xin-Ming Zhang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第6期1427-1443,共17页
Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional structures.Recent work ... Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional structures.Recent work in this area usually constructs deeper and deeper neural networks trained with end-to-end approaches to improve the performance.However,the higher the complexity of the network,the more the computing resources and time required.To improve the performance without more computing requirements,we concentrate on the training data and the training strategy in this paper.We propose a data augmentation method which can generate synthetic samples with new LaTeX notations by only using the official training data of CROHME.Moreover,we propose a novel training strategy called Shuffled Multi-Round Training(SMRT)to regularize the model.With the generated data and the shuffled multi-round training strategy,we achieve the state-of-the-art result in expression accuracy,i.e.,59.74%and 61.57%on CROHME 2014 and 2016,respectively,by using attention-based encoder-decoder models for offline handwritten mathematical expression recognition. 展开更多
关键词 handwritten mathematical expression recognition OFFLINE synthetic data generation training strategy
原文传递
A New Linguistic Decoding Method for Online Handwritten Chinese Character Recognition
19
作者 徐志明 王晓龙 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第6期597-603,共7页
This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification t... This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification technique. The linguistic decoding algorithm consists of three stages: word lattice construction, the optimal sentence hypothesis search and self-adaptive learning mechanism. The technique has been applied to palmtop computer's online handwritten Chinese character recognition. Samples containing millions of characters were used to test the linguistic decoder. In the open experiment, accuracy rate up to 92% is achieved, and the error rate is reduced by 68%. 展开更多
关键词 handwritten Chinese character recognition N-GRAM linguistic decoding
原文传递
Constructing an AI Compiler for ARM Cortex-M Devices
20
作者 Rong-Guey Chang Tam-Van Hoang 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期999-1019,共21页
The diversity of software and hardware forces programmers to spend a great deal of time optimizing their source code,which often requires specific treatment for each platform.The problem becomes critical on embedded d... The diversity of software and hardware forces programmers to spend a great deal of time optimizing their source code,which often requires specific treatment for each platform.The problem becomes critical on embedded devices,where computational and memory resources are strictly constrained.Compilers play an essential role in deploying source code on a target device through the backend.In this work,a novel backend for the Open Neural Network Compiler(ONNC)is proposed,which exploits machine learning to optimize code for the ARM Cortex-M device.The backend requires minimal changes to Open Neural Network Exchange(ONNX)models.Several novel optimization techniques are also incorporated in the backend,such as quantizing the ONNX model’s weight and automatically tuning the dimensions of operators in computations.The performance of the proposed framework is evaluated for two applications:handwritten digit recognition on the Modified National Institute of Standards and Technology(MNIST)dataset and model,and image classification on the Canadian Institute For Advanced Research and 10(CIFAR-10)dataset with the AlexNet-Light model.The system achieves 98.90%and 90.55%accuracy for handwritten digit recognition and image classification,respectively.Furthermore,the proposed architecture is significantly more lightweight than other state-of-theart models in terms of both computation time and generated source code complexity.From the system perspective,this work provides a novel approach to deploying direct computations from the available ONNX models to target devices by optimizing compilers while maintaining high efficiency in accuracy performance. 展开更多
关键词 Open neural network compiler backend ARM Cortex-M device handwritten digit recognition image classification
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部