期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure characteristics of Ni/WC composite cladding coatings 被引量:7
1
作者 Gui-rong Yang Chao-peng Huang +4 位作者 Wen-ming Song Jian Li Jin-jun Lu Ying Ma and Yuan Hao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期184-192,共9页
A multilayer tungsten carbide particle(WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology.The morphology,microstructure,and formation mechanism of the coating... A multilayer tungsten carbide particle(WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology.The morphology,microstructure,and formation mechanism of the coating were studied and discussed in different zones.The microstructure morphology and phase composition were investigated by scanning electron microscopy,optical microscopy,X-ray diffraction,and energy-dispersive X-ray spectroscopy.In the results,the coating presents a dense and homogeneous microstructure with few pores and is free from cracks.The whole coating shows a multilayer structure,including composite,transition,fusion,and diffusion-affected layers.Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers.The Ni-based alloy is mainly composed of y-Ni solid solution with finely dispersed Cr7C3/Cr(23)C6,CrB,and Ni+Ni3Si.WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles,forming a special three-dimensional reticular microstructure.The macrohardness of the coating is HRC 55,which is remarkably improved compared to that of the substrate.The microhardness increases gradually from the substrate to the composite zone,whereas the microhardness remains almost unchanged in the transition and composite zones. 展开更多
关键词 cladding composite coatings microstructure characteristics formation mechanisms hardness
下载PDF
EXPERIMENTAL STUDY OF ROCK BREAKING EFFECT OF STEEL PARTICLES 被引量:5
2
作者 CUI Meng ZHAI Ying-hu JI Guo-dong 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第2期241-246,共6页
Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, ... Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, the influence of jet flow factors, hydraulic factors and abrasive factors on rock breaking is studied through indoor experiments of impact by steel particles. The results indicate that the particle water jet has an optimal standoff distance and particle concentration; the rock breaking effect declines with the increase of the confining pressure and the decrease of the pump pressure and particle diameter. This study will provide some food of thought for the development of particle impact drilling technology. 展开更多
关键词 hard formation particle impact drilling water jet rock breaking effect experimental research
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部