Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosi...Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).展开更多
The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of ro...The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.展开更多
The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of t...The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of the wear rate indirectly Confirmed the reasonableness of the result of calculation. It is shown that the hardness of the surface layer strengthened, by ion implantation is nine times higher than that of beryllium itself. The relation between hardness and implantation dose was analysed and the best dose was obtained.展开更多
After different heat treatment processes, the metal compound, the microstructure and the hardness of the C-Cr-W- Mo-V-RE Fe-based hardfacing layers are investigated by means of metallographic microscope, X-ray diffrac...After different heat treatment processes, the metal compound, the microstructure and the hardness of the C-Cr-W- Mo-V-RE Fe-based hardfacing layers are investigated by means of metallographic microscope, X-ray diffraction ( XRD ), energy dispersive spectrum( EDS ), transmission electron microscope(TEM) and hardness tester. The results show that the hardfacing layers have higher tempering stability and secondary hardening property. After quenching at 820 ℃ ,the hardness value( HRC37 ) and the microstructure of the layers are similar to that normalized at 820 - 1 000 ℃. The tempering stability and the hardness increases with increasing quench temperature, which is attributed to the amount of the alloy element in the matrix. These results are very helpful for improving the mechanical properties of the hardfacing layers.展开更多
The effects of heat treatment on tnicrostructure and hardness of laser surface-clad Ni2 !+20%WC+0.5%CeO2 on the heat-resistant cast iron were investigated by means of X-ray diffraction(XRD), transmission electron micr...The effects of heat treatment on tnicrostructure and hardness of laser surface-clad Ni2 !+20%WC+0.5%CeO2 on the heat-resistant cast iron were investigated by means of X-ray diffraction(XRD), transmission electron microscope(TEM) and microhardness test. The experimental results showed that heat-treating at 500’C has no effect on microstructure and hardness of the layers. Although the phase composition of the layers heat-treated at 700°C and 800°C remain unchanged, more Ni3B and N14B3 phases are precipitated on the matrix of the cladding layer, the metastable phase—M7C3 is transformed into steady phase—M23C6, and the precipitated phases coarsened.展开更多
A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when...A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when the indentation is less than 100 nanometers, in which current nanoindentation experiments have no reliable accuracy. The whole hardness-displacement curve and fitted equation are obtained. At last, a formula to predict the hardness of the thin film on the material surface is derived and favorably compared with experiments.展开更多
The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as...The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.展开更多
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat...The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.展开更多
在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年...在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年代、粒度特征、地球化学特征、工程地质特性等。研究表明:第一硬土层形成年龄为20~11 ka B.P.(多个光释光和14C测年资料);硬土层含水率随深度的增加有增大的趋势,表明气候自下向上逐渐变凉和变干;第一硬土层的颗粒级配、粒度分布频率曲线、C-M沉积图等特征显示,第一硬土层主要由粉砂、极细砂和粘土粒级组成,样品的粒度频率曲线主要呈单峰分布,反映出物质沉积前所受搬运营力性质单一,土体颗粒沉积以均匀悬浮占绝对优势,沉积环境是一种相对稳定的低能环境。第一硬土层的发育受气候控制,大致可以分为3个阶段:第1阶段(20~15 ka B.P.)为沉积与成土交替作用时期,且以沉积作用为主,硬土层剖面厚度主要受该阶段控制,至末次盛冰期结束;第2阶段(15~11 ka B.P.)为暴露成土期,这时洪水不能形成越岸沉积,加积作用基本停止,硬土层厚度不再明显增加,已形成的第一硬土区域受到频繁变迁的分合河网的侵蚀切割,形成多条不规则古河道和台地,硬土层逐渐脱水成陆,经历了风化成壤的过程;第3阶段(11 ka B.P.至今)为淹埋期,随着全新世的到来,气候变暖,海平面不断上升,硬土层被其上覆的海相沉积层掩埋,成岩作用开始直到现今。土体易溶盐含量较高,为典型氯盐渍土类型,自下而上具有从低变高的趋势,为海相层覆盖硬土层以后成岩过程造成的。展开更多
An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combin...An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.展开更多
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf...During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.展开更多
Investigation of the physical and mechanical properties of snow has long been a topic of interest to researchers as the construction of compacted-snow runways in Antarctica developed. In an attempt to assess the stren...Investigation of the physical and mechanical properties of snow has long been a topic of interest to researchers as the construction of compacted-snow runways in Antarctica developed. In an attempt to assess the strength of layered compacted seasonal snow, penetration tests using modified Rammsonde were conducted in Harbin, China in early 2018. Compared with previous models, the modified Rammsonde is lighter overall, with improved resolution;thus, it is more suitable for seasonal snow;the mechanical structure was adjusted, and the reading of depth data is more convenient. A total of 74 penetration tests were carried out and the results were analyzed both qualitatively and quantitatively. The results of these analyses demonstrated the applicability of the device, and revealed that several factors affect the cone penetrometer's estimate of the strength of the layered compacted seasonal snow. Such factors include the confining pressure, penetration energy, and the snow material properties, particularly the compaction of the snow undergoing penetration. A linear relationship between the penetration pressure and snow density was also established. The effect of age hardening on the penetration pressure was studied and the microstructure of the snow particles was observed through a microscope. These analyses showed that the cone penetrometer and data processing methodology applied in this study enable a rapid estimate of strength in seasonal snow, and may be applied in Antarctica after further modification. This would provide a scientific basis for the design of China's Antarctic ice sheet airport.展开更多
基金Partial work of this project funded by National Elite Foundation of Iran and Iranian Nanotechnology Initiative is appreciated.
文摘Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).
基金Supported by the National Natural Science Foundation of China (50374049)
文摘The difficulty of selecting appropriate rheological model and parameters for the alternating distribution of soft and hard rock layers was often encountered due to the unhomogeneity, discontinuity and anisotropy of rock mass. The Burgers and generalized Kelvin models were applied to the soft and hard rock respectively and the rheological parameters were obtained based on the method of optimum separation. By using the simulated code FLAC^(3D), the stability of surrounding rocks of a certain underground plant was analyzed. The effect of surface load and weakening the parameters intensity of argillaceous and bioclastic interlayers between soft and hard rock on rheological behavior of layer composite rock mass was investigated. The results indicate that the rheological characteristics of soft and hard rock layer in composite rock mass can be described well with above two rheological models.
基金This project was suportod by Reijing Zhongguancun Associated Center of Analysis and Measurement
文摘The surface layer of beryllium, specimen, has been strengthened by ion implantation. Its microhardness was measured. The hardness of surface layer has been calculated from the microhardness. The experimental data of the wear rate indirectly Confirmed the reasonableness of the result of calculation. It is shown that the hardness of the surface layer strengthened, by ion implantation is nine times higher than that of beryllium itself. The relation between hardness and implantation dose was analysed and the best dose was obtained.
文摘After different heat treatment processes, the metal compound, the microstructure and the hardness of the C-Cr-W- Mo-V-RE Fe-based hardfacing layers are investigated by means of metallographic microscope, X-ray diffraction ( XRD ), energy dispersive spectrum( EDS ), transmission electron microscope(TEM) and hardness tester. The results show that the hardfacing layers have higher tempering stability and secondary hardening property. After quenching at 820 ℃ ,the hardness value( HRC37 ) and the microstructure of the layers are similar to that normalized at 820 - 1 000 ℃. The tempering stability and the hardness increases with increasing quench temperature, which is attributed to the amount of the alloy element in the matrix. These results are very helpful for improving the mechanical properties of the hardfacing layers.
文摘The effects of heat treatment on tnicrostructure and hardness of laser surface-clad Ni2 !+20%WC+0.5%CeO2 on the heat-resistant cast iron were investigated by means of X-ray diffraction(XRD), transmission electron microscope(TEM) and microhardness test. The experimental results showed that heat-treating at 500’C has no effect on microstructure and hardness of the layers. Although the phase composition of the layers heat-treated at 700°C and 800°C remain unchanged, more Ni3B and N14B3 phases are precipitated on the matrix of the cladding layer, the metastable phase—M7C3 is transformed into steady phase—M23C6, and the precipitated phases coarsened.
基金Chinese Academy of Sciences Foundation (KGCX1-11) N ational Natural Science Foundation of China (10 2 3 2 0 5 0 ) Min-istry of Science and Technology Foundation (2 0 0 2 CB412 70 6)
文摘A method for hardness measurement and evaluation of double-layer thin films on the material surface is proposed. Firstly, it is studied how to obtain the force-indentation response with the finite element method when the indentation is less than 100 nanometers, in which current nanoindentation experiments have no reliable accuracy. The whole hardness-displacement curve and fitted equation are obtained. At last, a formula to predict the hardness of the thin film on the material surface is derived and favorably compared with experiments.
基金Funded by"Xi-Bu-Zhi-Guang" Foundation of Chinese Academy of Sciences(No.XBZG-2007-5)Gansu Natural Science Foundation of China(No.0806RJYA004)Outstanding Youngth of Lanzhou University of Technology (No.Q200910)
文摘The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μm which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV1000.
文摘The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.
文摘在长江河口两翼广泛分布第一硬土层(FHSL),研究其形成机制及工程地质特性对工程建设具有很好的指导意义。根据调查资料(钻孔935个,累计进尺42128 m)和试验资料,首次精确确认了长江河口北翼第一硬土层分布界线,研究了第一硬土层的形成年代、粒度特征、地球化学特征、工程地质特性等。研究表明:第一硬土层形成年龄为20~11 ka B.P.(多个光释光和14C测年资料);硬土层含水率随深度的增加有增大的趋势,表明气候自下向上逐渐变凉和变干;第一硬土层的颗粒级配、粒度分布频率曲线、C-M沉积图等特征显示,第一硬土层主要由粉砂、极细砂和粘土粒级组成,样品的粒度频率曲线主要呈单峰分布,反映出物质沉积前所受搬运营力性质单一,土体颗粒沉积以均匀悬浮占绝对优势,沉积环境是一种相对稳定的低能环境。第一硬土层的发育受气候控制,大致可以分为3个阶段:第1阶段(20~15 ka B.P.)为沉积与成土交替作用时期,且以沉积作用为主,硬土层剖面厚度主要受该阶段控制,至末次盛冰期结束;第2阶段(15~11 ka B.P.)为暴露成土期,这时洪水不能形成越岸沉积,加积作用基本停止,硬土层厚度不再明显增加,已形成的第一硬土区域受到频繁变迁的分合河网的侵蚀切割,形成多条不规则古河道和台地,硬土层逐渐脱水成陆,经历了风化成壤的过程;第3阶段(11 ka B.P.至今)为淹埋期,随着全新世的到来,气候变暖,海平面不断上升,硬土层被其上覆的海相沉积层掩埋,成岩作用开始直到现今。土体易溶盐含量较高,为典型氯盐渍土类型,自下而上具有从低变高的趋势,为海相层覆盖硬土层以后成岩过程造成的。
基金supported by the National Key R&D Program of China (No. 2016YFC0302301)the National Natural Science Foundation of China (No. 51479183)
文摘An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.
基金Supported by National Natural Science Foundation of China (Grant Nos.51105119,51235003)
文摘During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model.
基金supported by the National Natural Science Foundation of China (Grant nos.41676187 and 41876213)
文摘Investigation of the physical and mechanical properties of snow has long been a topic of interest to researchers as the construction of compacted-snow runways in Antarctica developed. In an attempt to assess the strength of layered compacted seasonal snow, penetration tests using modified Rammsonde were conducted in Harbin, China in early 2018. Compared with previous models, the modified Rammsonde is lighter overall, with improved resolution;thus, it is more suitable for seasonal snow;the mechanical structure was adjusted, and the reading of depth data is more convenient. A total of 74 penetration tests were carried out and the results were analyzed both qualitatively and quantitatively. The results of these analyses demonstrated the applicability of the device, and revealed that several factors affect the cone penetrometer's estimate of the strength of the layered compacted seasonal snow. Such factors include the confining pressure, penetration energy, and the snow material properties, particularly the compaction of the snow undergoing penetration. A linear relationship between the penetration pressure and snow density was also established. The effect of age hardening on the penetration pressure was studied and the microstructure of the snow particles was observed through a microscope. These analyses showed that the cone penetrometer and data processing methodology applied in this study enable a rapid estimate of strength in seasonal snow, and may be applied in Antarctica after further modification. This would provide a scientific basis for the design of China's Antarctic ice sheet airport.