期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved shape hardening function for bounding surface model for cohesive soils 被引量:1
1
作者 Andrés Nieto-Leal Victor N.Kaliakin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期328-337,共10页
A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement i... A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one. 展开更多
关键词 Constitutive model Bounding surface plasticity Shape hardening function Clay
下载PDF
Prediction of Forming Limit Diagrams for Materials with HCP Structure 被引量:1
2
作者 Sheng-Hua Wu Nan-Nan Song +1 位作者 Francisco M.Andrade Pires Abel D.Santos 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第12期1442-1451,共10页
The forming limit diagram(FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is timecon... The forming limit diagram(FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is timeconsuming and therefore the analytical prediction based on theory of plasticity and instability criteria allows a direct and efficient methodology to obtain critical values at different loading paths, thus carrying significant practical importance.However, the accuracy of the plastic instability prediction is strongly dependent on the choice of the material constitutive model [1–3]. Particularly for materials with hexagonal close packed(HCP) crystallographic structure, they have a very limited number of active slip systems at room temperature and demonstrate a strong asymmetry between yielding in tension and compression [4, 5]. Not only the magnitude of the yield locus changes, but also the shape of the yield surface is evolving during the plastic deformation [4]. Conventional phenomenological constitutive models of plasticity fail to capture this unconventional mechanical behavior [4, 6]. Cazacu and Plunkett [6] have proposed generic yield criteria, by using the transformed principal stress, to account for the initial plastic anisotropy and strength differential(SD) effect simultaneously. In this contribution, a generic FLD MATLAB script was developed based on Marciniak–Kuczynski analytical theory and applied to predict the localized necking. The influence of asymmetrical effect on the FLD was evaluated. Several yield functions such as von Mises, Hill, Barlat89, and Cazacu06 were incorporated into analysis. The paper also presents and discusses the influence of different hardening laws on the formability of materials with HCP crystal structures. The findings indicate that the plastic instability theory coupled with Cazacu model can adequately predict the onset of localized necking for HCP materials under different strain paths. 展开更多
关键词 Forming limit diagram(FLD) Marciniak–Kuczynski analysis Plastic instability Yield function hardening law
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部