Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full...Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full verifications. This paper introduces our design of Hardware/Software co-verification platform for EOS design. The hardware platform contains a microprocessor board and an FPGA (Field Programmable Gate Array)-based verification board, and the corresponding software includes test benches running in FPGAs, controlling programs for the microprocessor and a console program with GUI (Graphical User Interface) interface for configuration, management and supervision. The design is cost-effective and has been successfully employed to verify several IP (Intellectual Property) blocks of our EOS chip. Moreover, it is flexible and can be applied as a general-purpose verification platform.展开更多
The functions and characteristics of software radio are discussed. Using techniques and method of software radio, the concept and advantages of a new kind of radio fuze, software radio fuze, are analysed. Several kind...The functions and characteristics of software radio are discussed. Using techniques and method of software radio, the concept and advantages of a new kind of radio fuze, software radio fuze, are analysed. Several kinds of hardware platform structures of the software radio fuze are studied and the key techniques are analysed. The software radio fuze will become the most promising radio fuze techniques in 21st century.展开更多
Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/soft...Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/software (HW/SW) co-verification technique for FPGA test is proposed in this paper. Taking advantage of flexibility and observability of software in conjunction with high-speed simulation of hardware, this technique is capable of testing each input/output block (IOB) and configurable logic block (CLB) of FPGA automatically, exhaustively and repeatedly. Fault cells of FPGA can be positioned automatically by the proposed approach. As a result, test efficiency and reliability can be enhanced without manual work.展开更多
文摘Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full verifications. This paper introduces our design of Hardware/Software co-verification platform for EOS design. The hardware platform contains a microprocessor board and an FPGA (Field Programmable Gate Array)-based verification board, and the corresponding software includes test benches running in FPGAs, controlling programs for the microprocessor and a console program with GUI (Graphical User Interface) interface for configuration, management and supervision. The design is cost-effective and has been successfully employed to verify several IP (Intellectual Property) blocks of our EOS chip. Moreover, it is flexible and can be applied as a general-purpose verification platform.
文摘The functions and characteristics of software radio are discussed. Using techniques and method of software radio, the concept and advantages of a new kind of radio fuze, software radio fuze, are analysed. Several kinds of hardware platform structures of the software radio fuze are studied and the key techniques are analysed. The software radio fuze will become the most promising radio fuze techniques in 21st century.
基金supported by Key Techniques of FPGA Architecture under Grant No.9140A08010106QT9201the support from UESTC Youth Funds
文摘Field programmable gate arrays (FPGAs) have wide and extensive applications in many areas. Due to programmable feature of FPGAs, faults of FPGAs can be easily tolerated if fault sites can be located. A hardware/software (HW/SW) co-verification technique for FPGA test is proposed in this paper. Taking advantage of flexibility and observability of software in conjunction with high-speed simulation of hardware, this technique is capable of testing each input/output block (IOB) and configurable logic block (CLB) of FPGA automatically, exhaustively and repeatedly. Fault cells of FPGA can be positioned automatically by the proposed approach. As a result, test efficiency and reliability can be enhanced without manual work.