Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro...Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.展开更多
The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this...The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.展开更多
The Internet of Vehicles(IoV)will carry a large amount of security and privacy-related data,which makes the secure communication between the IoV terminals increasingly critical.This paper studies the joint beamforming...The Internet of Vehicles(IoV)will carry a large amount of security and privacy-related data,which makes the secure communication between the IoV terminals increasingly critical.This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure(V2I)and Vehicle-toVehicle(V2V)communication with Reconfigurable Intelligent Surface(RIS)assistance,taking into account hardware impairments.A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS.Based on this model,we propose to maximize the V2I physical-layer security transmission rate.To solve the coupled non-convex optimization problem,an alternating optimization algorithm based on second-order cone programming and semidefinite relaxation is proposed to obtain the optimal V2I base station transmit precoding and RIS reflect phase shift matrix.Finally,simulation results are presented to verify the convergence and superiority of our proposed algorithm while analyzing the impact of system parameters on the V2I physical-layer security transmission rate.The simulation results further demonstrate that the proposed robust beamforming algorithm considering hardware impairments will achieve an average performance improvement of 0.7 dB over a non-robustly designed algorithm.Furthermore,increasing the number of RIS reflective units from 10 to 50 results in an almost 2 dB enhancement in secure transmission rate.展开更多
The SubBytes (S-box) transformation is the most crucial operation in the AES algorithm, significantly impacting the implementation performance of AES chips. To design a high-performance S-box, a segmented optimization...The SubBytes (S-box) transformation is the most crucial operation in the AES algorithm, significantly impacting the implementation performance of AES chips. To design a high-performance S-box, a segmented optimization implementation of the S-box is proposed based on the composite field inverse operation in this paper. This proposed S-box implementation is modeled using Verilog language and synthesized using Design Complier software under the premise of ensuring the correctness of the simulation result. The synthesis results show that, compared to several current S-box implementation schemes, the proposed implementation of the S-box significantly reduces the area overhead and critical path delay, then gets higher hardware efficiency. This provides strong support for realizing efficient and compact S-box ASIC designs.展开更多
A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and re...A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and reduces the measuring cycle. The calibration method of scale setting is also presented,and bymeasuring some calibrated objects,the demodulation errors and the error correction table is obtained.展开更多
The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system st...The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system structure design and the network export design, and discusses the network hardware system design and optimization for different scale universities according to different practical demand. The objective is that the network hardware system can meet the demand and have been made full use.展开更多
The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative...The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative options used in spinal fixation and fusion procedures, especially in his or her institute. This is critical in evaluating the position of implants and potential complications associated with the operative approaches and spinal fixation devices used. Thus, the radiologist can play an important role in patient care and outcome. This review outlines the advantages and disadvantages of commonly used imaging methods and reports on the best yield for each modality and how to overcome the problematic issues associated with the presence of metallic hardware during imaging. Baseline radiographs are essential as they are the baseline point for evaluation of future studies should patients develop symptoms suggesting possible complications. They may justify further imaging workup with computed tomography, magnetic resonance and/or nuclear medicine studies as the evaluation of a patient with a spinal implant involves a multi-modality approach. This review describes imaging features of potential complications associated with spinal fusion surgery as well as the instrumentation used. This basic knowledge aims to help radiologists approach everyday practice in clinical imaging.展开更多
Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can b...Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.展开更多
Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge,...Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.展开更多
Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficu...Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficult to detecte due to its minimal resource occupation. In order to achieve an accurate detection with high efficiency, a HT detection method based on the electromagnetic leakage of the chip is proposed in this paper. At first, the dimensionality reduction and the feature extraction of the electromagnetic leakage signals in each group(template chip, Trojan-free chip and target chip) were realized by principal component analysis(PCA). Then, the Mahalanobis distances between the template group and the other groups were calculated. Finally, the differences between the Mahalanobis distances and the threshold were compared to determine whether the HT had been implanted into the target chip. In addition, the concept of the HT Detection Quality(HTDQ) was proposed to analyze and compare the performance of different detection methods. Our experiment results indicate that the accuracy of this detection method is 91.93%, and the time consumption is 0.042s in average, which shows a high HTDQ compared with three other methods.展开更多
Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full...Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full verifications. This paper introduces our design of Hardware/Software co-verification platform for EOS design. The hardware platform contains a microprocessor board and an FPGA (Field Programmable Gate Array)-based verification board, and the corresponding software includes test benches running in FPGAs, controlling programs for the microprocessor and a console program with GUI (Graphical User Interface) interface for configuration, management and supervision. The design is cost-effective and has been successfully employed to verify several IP (Intellectual Property) blocks of our EOS chip. Moreover, it is flexible and can be applied as a general-purpose verification platform.展开更多
Nowadays, digital camera based remote controllers are widely used in people’s daily lives. It is known that the edge detection process plays an essential role in remote controlled applications. In this paper, a syste...Nowadays, digital camera based remote controllers are widely used in people’s daily lives. It is known that the edge detection process plays an essential role in remote controlled applications. In this paper, a system verification platform of hardware optimization based on the edge detection is proposed. The Field-Programmable Gate Array (FPGA) validation is an important step in the Integrated Circuit (IC) design workflow. The Sobel edge detection algorithm is chosen and optimized through the FPGA verification platform. Hardware optimization techniques are used to create a high performance, low cost design. The Sobel edge detection operator is designed and mounted through the system Advanced High-performance Bus (AHB). Different FPGA boards are used for evaluation purposes. It is proved that with the proposed hardware optimization method, the hardware design of the Sobel edge detection operator can save 6% of on-chip resources for the Sobel core calculation and 42% for the whole frame calculation.展开更多
The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible t...The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible to substantially accelerate calculations with hardware accelerators.Accordingly,this study develops a fast MC tool,called THUBrachy,which can be accelerated by several types of hardware accelerators.THUBrachy can simulate photons with energy less than 3 MeV and considers all photon interactions in the energy range.It was benchmarked against the American Association of Physicists in Medicine Task Group No.43 Report using a water phantom and validated with Geant4 using a clinical case.A performance test was conducted using the clinical case,showing that a multicore central processing unit,Intel Xeon Phi,and graphics processing unit(GPU)can efficiently accelerate the simulation.GPU-accelerated THUBrachy is the fastest version,which is 200 times faster than the serial version and approximately 500 times faster than Geant4.The proposed tool shows great potential for fast and accurate dose calculations in clinical applications.展开更多
In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots...In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots(SPs)is investigated.Tractable closed-form SE expressions for the considered system are derived,which share us with opportunities to explore the impacts of the hardware quality coefficient,the length of coherence interval,and the power balance factor between pilot and data signals.Numerical results indicate that the achievable SE deteriorates as the hardware quality decreases and is more susceptible to the hardware impairments at the user equipments(UEs).Besides,we observe that SPs outperform regular pilots(RPs)in terms of SE and this performance gain is heavily dependent on the values of power balance factor and coherence interval.However,the superiorities of SPs over RPs have vanished when severe hardware imperfections are considered.展开更多
Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information syste...Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information systems to which they belong.Existing solutions generally rely on passive detection techniques.In this paper,a hardware Trojans active defense mechanism is designed for network switching chips based on the principle of encryption algorithm.By encoding the data entering the chip,the argot hidden in the data cannot trigger the hardware Trojans that may exist in the chip,so that the chip can work normally even if it is implanted with a hardware Trojans.The proposed method is proved to be effective in preventing hardware Trojans with different trigger characteristics by simulation tests and practical tests on our secure switching chip.展开更多
Secure Hashing Algorithms (SHA) showed a significant importance in today’s information security applications. The National Institute of Standards and Technology (NIST), held a competition of three rounds to replace S...Secure Hashing Algorithms (SHA) showed a significant importance in today’s information security applications. The National Institute of Standards and Technology (NIST), held a competition of three rounds to replace SHA1 and SHA2 with the new SHA-3, to ensure long term robustness of hash functions. In this paper, we present a comprehensive hardware evaluation for the final round SHA-3 candidates. The main goal of providing the hardware evaluation is to: find the best algorithm among them that will satisfy the new hashing algorithm standards defined by the NIST. This is based on a comparison made between each of the finalists in terms of security level, throughput, clock frequancey, area, power consumption, and the cost. We expect that the achived results of the comparisons will contribute in choosing the next hashing algorithm (SHA-3) that will support the security requirements of applications in todays ubiquitous and pervasive information infrastructure.展开更多
Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS...Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS First.After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP,UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic.Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack.The designed scheme can be implemented easily,reduce cost significantly and shorten developing cycle.展开更多
The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent ve...The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent vehicle test platform has no uniform standard, which leads to different granularity of driving map information, The sensor information processing module is directly associated with the driving map information and decision-making module, which leads to the interface of intelligent driving system software module has no uniform standard, Based on the software and hardware architecture of intelligent vehicle, the sensor information and driving map information are processed by using the formal language of driving cognition to form a driving situation graph cluster and output to a decision-making module, and the out- put result of the decision-making module is shown as a cognitive arrow cluster, so that the whole process of intelligent driving from perception to decision-making is completed, The formalization of driving cognition reduces the influence of sensor type, model, quantity, and location on the whole software architec- ture, which makes the software architecture portable on different intelligent driving hardware platforms.展开更多
This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all tr...This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.展开更多
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金This work was supported by Open Fund Project of State Key Laboratory of Intelligent Vehicle Safety Technology by Grant with No.IVSTSKL-202311Key Projects of Science and Technology Research Programme of Chongqing Municipal Education Commission by Grant with No.KJZD-K202301505+1 种基金Cooperation Project between Chongqing Municipal Undergraduate Universities and Institutes Affiliated to the Chinese Academy of Sciences in 2021 by Grant with No.HZ2021015Chongqing Graduate Student Research Innovation Program by Grant with No.CYS240801.
文摘Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme.
基金partially supported by the National Natural Science Foundation of China under Grant 61701064Chongqing Natural Science Foundation under Grant cstc2019jcyj-msxmX0264Sichuan Science and Technology Program under Grant 2022YFQ0017。
文摘The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.
基金the Key Research and Development Plan of Jiangsu Province,grant number BE2020084-2the National Key Research and Development Program of China,grant number 2020YFB1600104.
文摘The Internet of Vehicles(IoV)will carry a large amount of security and privacy-related data,which makes the secure communication between the IoV terminals increasingly critical.This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure(V2I)and Vehicle-toVehicle(V2V)communication with Reconfigurable Intelligent Surface(RIS)assistance,taking into account hardware impairments.A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS.Based on this model,we propose to maximize the V2I physical-layer security transmission rate.To solve the coupled non-convex optimization problem,an alternating optimization algorithm based on second-order cone programming and semidefinite relaxation is proposed to obtain the optimal V2I base station transmit precoding and RIS reflect phase shift matrix.Finally,simulation results are presented to verify the convergence and superiority of our proposed algorithm while analyzing the impact of system parameters on the V2I physical-layer security transmission rate.The simulation results further demonstrate that the proposed robust beamforming algorithm considering hardware impairments will achieve an average performance improvement of 0.7 dB over a non-robustly designed algorithm.Furthermore,increasing the number of RIS reflective units from 10 to 50 results in an almost 2 dB enhancement in secure transmission rate.
文摘The SubBytes (S-box) transformation is the most crucial operation in the AES algorithm, significantly impacting the implementation performance of AES chips. To design a high-performance S-box, a segmented optimization implementation of the S-box is proposed based on the composite field inverse operation in this paper. This proposed S-box implementation is modeled using Verilog language and synthesized using Design Complier software under the premise of ensuring the correctness of the simulation result. The synthesis results show that, compared to several current S-box implementation schemes, the proposed implementation of the S-box significantly reduces the area overhead and critical path delay, then gets higher hardware efficiency. This provides strong support for realizing efficient and compact S-box ASIC designs.
文摘A hardwale demodulation method for 2-D edge detection is proposed. The filtering step and the differential step are implemented by using the hardware circuit. This demodulation circuit simplifies the edgefinder and reduces the measuring cycle. The calibration method of scale setting is also presented,and bymeasuring some calibrated objects,the demodulation errors and the error correction table is obtained.
文摘The emphasis of constructing and developing the campus information network is how to design and optimize the network hardware system. This paper mainly studies the network system structure design, the server system structure design and the network export design, and discusses the network hardware system design and optimization for different scale universities according to different practical demand. The objective is that the network hardware system can meet the demand and have been made full use.
文摘The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative options used in spinal fixation and fusion procedures, especially in his or her institute. This is critical in evaluating the position of implants and potential complications associated with the operative approaches and spinal fixation devices used. Thus, the radiologist can play an important role in patient care and outcome. This review outlines the advantages and disadvantages of commonly used imaging methods and reports on the best yield for each modality and how to overcome the problematic issues associated with the presence of metallic hardware during imaging. Baseline radiographs are essential as they are the baseline point for evaluation of future studies should patients develop symptoms suggesting possible complications. They may justify further imaging workup with computed tomography, magnetic resonance and/or nuclear medicine studies as the evaluation of a patient with a spinal implant involves a multi-modality approach. This review describes imaging features of potential complications associated with spinal fusion surgery as well as the instrumentation used. This basic knowledge aims to help radiologists approach everyday practice in clinical imaging.
文摘Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.
基金The authors would like to thank the anonymous reviewers for their insightful corrnlents that have helped improve the presentation of this paper. The work was supported partially by the National Natural Science Foundation of China under Grants No. 61070192, No.91018008, No. 61170240 the National High-Tech Research Development Program of China under Grant No. 2007AA01ZA14 the Natural Science Foundation of Beijing un- der Grant No. 4122041.
文摘Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.
基金supported by the Special Funds for Basic Scientific Research Business Expenses of Central Universities No. 2014GCYY0the Beijing Natural Science Foundation No. 4163076the Fundamental Research Funds for the Central Universities No. 328201801
文摘Hardware Trojan(HT) refers to a special module intentionally implanted into a chip or an electronic system. The module can be exploited by the attacker to achieve destructive functions. Unfortunately the HT is difficult to detecte due to its minimal resource occupation. In order to achieve an accurate detection with high efficiency, a HT detection method based on the electromagnetic leakage of the chip is proposed in this paper. At first, the dimensionality reduction and the feature extraction of the electromagnetic leakage signals in each group(template chip, Trojan-free chip and target chip) were realized by principal component analysis(PCA). Then, the Mahalanobis distances between the template group and the other groups were calculated. Finally, the differences between the Mahalanobis distances and the threshold were compared to determine whether the HT had been implanted into the target chip. In addition, the concept of the HT Detection Quality(HTDQ) was proposed to analyze and compare the performance of different detection methods. Our experiment results indicate that the accuracy of this detection method is 91.93%, and the time consumption is 0.042s in average, which shows a high HTDQ compared with three other methods.
文摘Ethernet over SDH/SONET (EOS) is a hotspot in today's data transmission technology for it combines the merits of both Ethernet and SDH/SONET. However, implementing an EOS system on a chip is complex and needs full verifications. This paper introduces our design of Hardware/Software co-verification platform for EOS design. The hardware platform contains a microprocessor board and an FPGA (Field Programmable Gate Array)-based verification board, and the corresponding software includes test benches running in FPGAs, controlling programs for the microprocessor and a console program with GUI (Graphical User Interface) interface for configuration, management and supervision. The design is cost-effective and has been successfully employed to verify several IP (Intellectual Property) blocks of our EOS chip. Moreover, it is flexible and can be applied as a general-purpose verification platform.
文摘Nowadays, digital camera based remote controllers are widely used in people’s daily lives. It is known that the edge detection process plays an essential role in remote controlled applications. In this paper, a system verification platform of hardware optimization based on the edge detection is proposed. The Field-Programmable Gate Array (FPGA) validation is an important step in the Integrated Circuit (IC) design workflow. The Sobel edge detection algorithm is chosen and optimized through the FPGA verification platform. Hardware optimization techniques are used to create a high performance, low cost design. The Sobel edge detection operator is designed and mounted through the system Advanced High-performance Bus (AHB). Different FPGA boards are used for evaluation purposes. It is proved that with the proposed hardware optimization method, the hardware design of the Sobel edge detection operator can save 6% of on-chip resources for the Sobel core calculation and 42% for the whole frame calculation.
基金supported by the National Natural Science Foundation of China(No.11875036)。
文摘The Monte Carlo(MC)simulation is regarded as the gold standard for dose calculation in brachytherapy,but it consumes a large amount of computing resources.The development of heterogeneous computing makes it possible to substantially accelerate calculations with hardware accelerators.Accordingly,this study develops a fast MC tool,called THUBrachy,which can be accelerated by several types of hardware accelerators.THUBrachy can simulate photons with energy less than 3 MeV and considers all photon interactions in the energy range.It was benchmarked against the American Association of Physicists in Medicine Task Group No.43 Report using a water phantom and validated with Geant4 using a clinical case.A performance test was conducted using the clinical case,showing that a multicore central processing unit,Intel Xeon Phi,and graphics processing unit(GPU)can efficiently accelerate the simulation.GPU-accelerated THUBrachy is the fastest version,which is 200 times faster than the serial version and approximately 500 times faster than Geant4.The proposed tool shows great potential for fast and accurate dose calculations in clinical applications.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 62071246,61771252,61861039,and 61427801in part by the National Key Research and Development Program of China under Grants 2020YFB1806608 and 2018YFC1314903+2 种基金in part by the Jiangsu Province Special Fund Project for Transformation of Scientific and Technological Achievements under Grant BA2019058in part by the Major Natural Science Research Project of Jiangsu Higher Education Institutions under Grant 18KJA510005in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grants SJKY190740 and KYCX200709.
文摘In this paper,the spectral efficiency(SE)of an uplink hardware-constrained cell-free massive multi-input multi-output(MIMO)system with maximal ratio combining(MRC)receiver filters in the context of superimposed pilots(SPs)is investigated.Tractable closed-form SE expressions for the considered system are derived,which share us with opportunities to explore the impacts of the hardware quality coefficient,the length of coherence interval,and the power balance factor between pilot and data signals.Numerical results indicate that the achievable SE deteriorates as the hardware quality decreases and is more susceptible to the hardware impairments at the user equipments(UEs).Besides,we observe that SPs outperform regular pilots(RPs)in terms of SE and this performance gain is heavily dependent on the values of power balance factor and coherence interval.However,the superiorities of SPs over RPs have vanished when severe hardware imperfections are considered.
文摘Hardware Trojans in integrated circuit chips have the characteristics of being covert,destructive,and difficult to protect,which have seriously endangered the security of the chips themselves and the information systems to which they belong.Existing solutions generally rely on passive detection techniques.In this paper,a hardware Trojans active defense mechanism is designed for network switching chips based on the principle of encryption algorithm.By encoding the data entering the chip,the argot hidden in the data cannot trigger the hardware Trojans that may exist in the chip,so that the chip can work normally even if it is implanted with a hardware Trojans.The proposed method is proved to be effective in preventing hardware Trojans with different trigger characteristics by simulation tests and practical tests on our secure switching chip.
文摘Secure Hashing Algorithms (SHA) showed a significant importance in today’s information security applications. The National Institute of Standards and Technology (NIST), held a competition of three rounds to replace SHA1 and SHA2 with the new SHA-3, to ensure long term robustness of hash functions. In this paper, we present a comprehensive hardware evaluation for the final round SHA-3 candidates. The main goal of providing the hardware evaluation is to: find the best algorithm among them that will satisfy the new hashing algorithm standards defined by the NIST. This is based on a comparison made between each of the finalists in terms of security level, throughput, clock frequancey, area, power consumption, and the cost. We expect that the achived results of the comparisons will contribute in choosing the next hashing algorithm (SHA-3) that will support the security requirements of applications in todays ubiquitous and pervasive information infrastructure.
文摘Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS First.After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP,UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic.Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack.The designed scheme can be implemented easily,reduce cost significantly and shorten developing cycle.
基金This work was supported by China Postdoctoral Science Foundation Special Funded Projects (2018T110095), project funded by China Postdoctoral Science Foundation (2017M620765), National Key Research and Development Program of China (2017YFB0102603), and Junior Fellowships for Advanced Innovation Think-tank Program of China Association for Science and Technology (DXB -ZKQN -2017-035 ).
文摘The type, model, quantity, and location of sensors installed on the intelligent vehicle test platform are different, resulting in different sensor information processing modules, The driving map used in intelligent vehicle test platform has no uniform standard, which leads to different granularity of driving map information, The sensor information processing module is directly associated with the driving map information and decision-making module, which leads to the interface of intelligent driving system software module has no uniform standard, Based on the software and hardware architecture of intelligent vehicle, the sensor information and driving map information are processed by using the formal language of driving cognition to form a driving situation graph cluster and output to a decision-making module, and the out- put result of the decision-making module is shown as a cognitive arrow cluster, so that the whole process of intelligent driving from perception to decision-making is completed, The formalization of driving cognition reduces the influence of sensor type, model, quantity, and location on the whole software architec- ture, which makes the software architecture portable on different intelligent driving hardware platforms.
基金supported in part by the National Natural Science Foundation of China under Grant 62201451in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210121+1 种基金in part by the Shaanxi provincial special fund for Technological innovation guidance(2022CGBX-29)in part by BUPT Excellent Ph.D.Students Foundation under Grant CX2022106.
文摘This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.