[Objective] The experiment was aimed to select effective and economical media for container seedling of triploid clones of Populus tomentosa that was carried out. [Method] The sandy loam, peat, perlite, vermiculite, r...[Objective] The experiment was aimed to select effective and economical media for container seedling of triploid clones of Populus tomentosa that was carried out. [Method] The sandy loam, peat, perlite, vermiculite, riversand, sludge were taken as media of hardwood cutting and survival rate, seedling height were taken as indexes to select media for container seedling of triploid clones of Populus tomentosa. [Result] Different mixedmedia had great influence on survival rates of container seedlings. Taking peat and vermiculite with the proportion of 5∶2 (M10) or peat ,vermiculite with the proportion of 7∶2 (M11) or sandy loam (M1) as media would generate higher cutting survival rate that was higher than 90.0%. There were significant differece in height increments of container seedlings. Taking sandy loam, peat and vermiculite with the proportion of 6∶2∶2(M5)or sandy loam (M1), seedling height of 60-days the seedling was over 37.0 cm. [Conclusion] According to cost analysis of nursery medium, the optimum medium for hardwood cuttings container seedling-raising of triploid clones of Populus tomentosa was sandy loam.展开更多
[Objective] Hard-branch cutting propagation technology of Fraxinus was studied under different environmental conditions. [Method] An orthogonal test was designed based on 1-year-old clones of F. pennsylvanica Marsh Lu...[Objective] Hard-branch cutting propagation technology of Fraxinus was studied under different environmental conditions. [Method] An orthogonal test was designed based on 1-year-old clones of F. pennsylvanica Marsh Lula 5. Under dif- ferent growth hormones, hormone concentrations and processing time, F. velutina Lula 2 and F. pennsy/vanica Marsh Yuanla 2 were treated by vacuum pump for 10 min, [Result] The decreasing order of cutting survival rates of Lula 5 under different etnvironments was small plastic flowerpot (94.4%), nutrition cup (92.8%), sand tray (56.1%), and cuffings treated with 100 mg/L ABT, for 2 h, 200 mg/L ABT, for 4 h and 100 mg/L IBA for 6 h under large nutrition cup environment grew the best, showing a survival rate of 100%. Lula 2 and Yuanla 2 were subjected to vacuum pump treatment, the survival rate of cuttings under the sand tray environment was averagely 29%; and under the large plastic flowerpot environment, the survival rate of cuttings was averagaly 64.4%, and cuttings of Lula 2 treated with vacuum pump for 10 min in 200 mg/L ABTI showed a survival rate up to 95%, which was the highest among all treatments. It could be seen that whether cuttings were treated with vacuum pump, the survival rate of cuttings in sand tray was lower than those under other environments, while there was no big difference in survival rate of cut- tings between the nutrition cup and plastic flowerpot environments. [Conclusion] This study is of great significance to improvement of cutting propagation coefficient.展开更多
Unlike fire or insect outbreaks, for which a suppression program can be implemented, it is impossible to prevent a windstorm event or stop it while it is occurring. Reducing stand susceptibility to windstorms requires...Unlike fire or insect outbreaks, for which a suppression program can be implemented, it is impossible to prevent a windstorm event or stop it while it is occurring. Reducing stand susceptibility to windstorms requires a good understanding of the factors affecting this susceptibility. Distinct species- and size-related differences in stem windthrow susceptibility are difficult to obtain because it is impossible to distinguish their relative effects from those of wind intensity. Using a damage assessment database (60 20-metre radius plots) acquired after an exceptional wind storm in Western Quebec in 2007, we developed an approach in which proportions of windthrown sugar maple poles were used as bio-indicators of wind intensities affecting the plots. We distinguished between single and interactive effects of wind intensity, species, stem size, and local basal area on stem windthrow susceptibility. The best logistic regression model predicting stem windthrow included the wind intensity bio-indicator, species, basal area, and the species by diameter at breast height (DBH, 1.3 m) interaction. Stem windthrow probability generally increased with DBH and decreased with basal area. Species wind-firmness was ordered as: yellow birch > sugar maple = eastern hemlock = American beech > ironwood > basswood = other hardwoods = other softwoods. Our method remained an indirect method of measuring wind intensity and its real test would require a comparison with anemometer measurements during a windstorm. Despite its indirect nature, the method is both simple and ecologically sound. Hence, it opens the door to conducting similar windthrow studies in other ecosystems.展开更多
The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) we...The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.展开更多
Wood is composed of mostly hollow, elongated, spindle-shaped cells that are arranged parallel to each other along the trunk of a tree. The characteristics of these fibrous cells and their arrangement affect strength p...Wood is composed of mostly hollow, elongated, spindle-shaped cells that are arranged parallel to each other along the trunk of a tree. The characteristics of these fibrous cells and their arrangement affect strength properties, appearance, resistance to penetration by water and chemical solutions, resistance to decay and many other properties. The characterisation of wood helps in identifying them. In this work, we studied the anatomical properties of three lesser utilised Ghanaian hardwood species namely Albizia ferruginea (Guill. & Perr.) Benth, Blighia sapida K. D. Koenig and Sterculia rhinopetala K. Schum using the light microscope and scanning electron microscope (SEM). Anatomical features studied were fiber length, double fiber wall thickness, fiber proportion, vessel diameter and proportion, rays and axial parenchyma proportions. We observed that the use of SEM in studying the anatomical or ultra-structural aspects of wood gave a clearer understanding of the features and structures found in wood. Anatomical features such as presence of crystals and absence of axial parenchyma in Blighia sapida and the thick wall fibers of Sterculia rhinopetala were better understood.展开更多
A process-based, biological model is presented that simulates soil nitrogen (N) mineralization and nitrification in two northern hardwood forest ecosystems in the Upper Peninsula of Michigan. The soil system is divide...A process-based, biological model is presented that simulates soil nitrogen (N) mineralization and nitrification in two northern hardwood forest ecosystems in the Upper Peninsula of Michigan. The soil system is divided into two compartments (forest floor and mineral soil) since quantity and quality of the organic substrate, and the important driving variables (temperature and moisture) for the model vary between these two compartments. The model focuses on the central position of microorganisms in the N mineralization and nitrification processes, and the use of multiplicative factors to account for the effect of temperature, moisture and carbon(C):N ratio on these processes.The model has been validated with data from two northern hardwood stands in the Upper Peninsula of Michigan. A close agreement between calculated and observed monthly means was obtained in both stands, especially for net N mineralization, which plays a very impormnt role in determining available N. The nitrification rates had relatively larger variation than the N mineralization rates, but the model adequately described the seasonal trends of the observed values. A simple sensitivity analysiwas performed to assess the response of the model to changes in important variables (temperature, moisture, organic N, and C:N ratio) between the two study sites. This analysis showed that increased temperature and higher organic N levels consistently increased N mineralization and nitrification in the both stands. The model's results were most sensitive to moisture changes in forest floor, but were not sensitive to moisture changes in the mineral soil. In contrast, C:N ratio was influential in the mineral soil, but did not have any effect in the forest floor.展开更多
Drought periods are becoming more extreme worldwide and the ability of plants to contribute towards atmospheric flux is being compromised. Properly functioning stomata provide an exit for water that has been absorbed ...Drought periods are becoming more extreme worldwide and the ability of plants to contribute towards atmospheric flux is being compromised. Properly functioning stomata provide an exit for water that has been absorbed by the roots, funneled into various cell parts, and eventually released into the atmosphere via transpiration. By observing the effects that weather conditions such as climate change may have on stomatal density, distribution, and functioning, it may be possible to elucidate a portion of the mechanisms trees use to survive longer periods of water stress. This study analyzed stomatal density (SD), stomatal conductance (gs ), CO2 assimilation (A), instantaneous water-use efficiency (WUEi ), and transpiration (E) rates in six native tree species in the Midwestern USA and showed that trees within the same ecotype followed similar trends, but that trees within the same family did not when exposed to identical greenhouse conditions. Naturally drought tolerant tree species demonstrated lower g s and higher WUEi , while intolerant species had higher SD. This study showed negative or no correlation between SD and g s , A, E, and WUEi and positive correlations between E and A and gs and E.展开更多
The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see...The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data.展开更多
We analyzed over 8 decades of change in forest composition(represented by species proportion of basal area)and size class from more than 400 permanent plots located on the Bartlett Experimental Forest in the White Mou...We analyzed over 8 decades of change in forest composition(represented by species proportion of basal area)and size class from more than 400 permanent plots located on the Bartlett Experimental Forest in the White Mountains of New Hampshire.These data represent one of the longest-term landscape-scale records of forest change based on permanent plots in North America.We analyzed the plots based on elevation class,land type indicating assumed successional direction(grouped into coniferous and deciduous),and inventory period within managed and unmanaged portions of the forest.An ongoing shift from small-to large-diameter stems is clear across all species,in response to the overall aging of the forest following exploitative harvesting in the 19th century.Major compositional changes include a continuing decline in shade-intolerant species(paper birch and aspen),along with the mid-tolerant yellow birch.An increase in red maple abundance through the early 1990s has leveled off or reversed.Among shade-tolerant species,increases in beech and red spruce were largely consistent with assumed land type on unmanaged plots,but heavy marking against diseased beech on managed plots restricted increase of that species.Sugar maple declined in abundance except where silvicultural intervention helped maintain it.By contrast,eastern hemlock showed a continuing expansion at all elevations below 600 m.The data continue to show little or no evidence of upward migration of species,despite evidence of recent regional change in climate.However,the BEF is poised for substantial changes when emerald ash borer and hemlock woolly adelgid,both of which are known to infest nearby areas,do arrive.展开更多
Resilience is a key function that affects an ecosystem’s ability to recover from disturbance. Understanding the extent to which forest communities recover after a long period of disturbance without direct interventio...Resilience is a key function that affects an ecosystem’s ability to recover from disturbance. Understanding the extent to which forest communities recover after a long period of disturbance without direct intervention is important to provide context for considering ecosystem response to disturbance regimes. Species composition and structure were recorded on bottomland hardwood stands that were once inland and freshwater tidal rice fields. We sampled 17 old-field sites and 7 reference sites across three geomorphic settings. The old-field sites ranged from 30 to 120 years since agricultural abandonment. A total of 89 species were found across the old field sites and reference sample areas. Of that total, trees comprised 33 species, shrubs—5 species, and vine/herbs/forbs—51 species. Using field data, combined with stand inventory records, aerial photography (1936-2010), and high-resolution LiDAR imagery, we chronicled the evolution of the forest since the cessation of agriculture. Our findings demonstrate how Pinus taeda seeded directly after the rice fields went to fallow;and this conversion of bottomland swamp to rice to pine was a direct result of water management embankments constructed across the landscape to aid in crop irrigation. The remnant water management features may still alter flooding patterns thereby affecting development of Taxodium distichum and Nyssa aquatica in the old-fields. These results suggest, that over the 100+ years forest stands on the Santee Experimental Forest have developed to represent bottomland hardwoods characteristic of the southeastern United States coastal plain.展开更多
To study the effects of stand development and overstory composition on stand age structure, we sampled 32 stands representing conifer, mixedwood, and hardwood stand types, ranging in ages from 72 to 201 years on uplan...To study the effects of stand development and overstory composition on stand age structure, we sampled 32 stands representing conifer, mixedwood, and hardwood stand types, ranging in ages from 72 to 201 years on upland mesic sites in northwestern Ontario. We defined the stages of stand development as: stem exclusion/canopy transition, canopy transition, canopy transition/gap dynamics, and gap dynamics. Stand age structure of conifer stands changed from bimodal, bimodal, reverse-J, and bimodal, respectively, through the stages of stand development. Mixedwood and hardwood stands revealed similar trends, with the exception of missing the canopy transition/gap dynamic stage in mixedwoods. Canopy transition/gap dynamic stage in hardwoods showed a weaker reverse-J distribution than their conifer counterparts. The results suggest that forest management activities such as partial and selection harvesting and seed-tree systems may diversify standard landscape-level age structures and benefit wildlife, hasten the onset of old-growth, and create desired stand age structures. We also recommend that the determination of old-growth using the following criteria in the boreal forest: 1) canopy breakdown of pioneering cohort is complete and stand is dominated by later successional tree species, and 2) stand age structure is bimodal, with dominating canopy trees that fall within a relatively narrow range of age and height classes and a significant amount of understory regeneration.展开更多
Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees beari...Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees bearing TreMs(hereafter,"TreM-trees")also remain to be determined.As logging practices can lead to a loss of TreM-trees and of their associated biodiversity,it is essential to identify the factors explaining TreM occurrence to better integrate them into forest management.We therefore inventoried TreMs in 40.5-ha survey strips in northern hardwood forests in Quebec,Canada,while recording the spatial location of each tree.Two strips were located in unmanaged oldgrowth forests,and 2 were in forests managed under selection cutting.All 4 stands were dominated by sugar maple(Acer saccharum Marsh.)and American beech(Fagus grandifolia Ehrn.).Beech bark disease,an exotic pathology,was observed in all the strips.Results:Large diameter at breast height and low tree vigor were the main characteristics explaining the presence of TreMs at the tree scale.TreM-trees presented slight spatial aggregation patterns.These aggregates,however,were not well-defined and were generally constituted by a large number of trees bearing few different types of TreMs.Two TreM classes(broken branch or top and woodpecker lodge)also presented a spatial aggregation.Logging practices had no significant effect on TreM occurrence.Beech bark disease increased the frequency of senescent beeches.The impact of this pathology on TreMs was however mitigated by the small size of infected trees and probably by the short time elapsed since its appearance.Conclusion:The factors explaining the presence and abundance of TreMs on trees has so far been little studied in North American hardwood forests.Our results highlight that TreM-tree characteristics in the surveyed forests are consistent with those of previous studies conducted in other forest types and regions(e.g.,Europe or Northwestern America).To our knowledge,this study is also the first to identify a spatial aggregation of TreM-trees and of specific TreM classes.It will be nevertheless necessary to determine whether the small impact of logging activities we observed results from current or past management practices.展开更多
The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony fur...The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.展开更多
Exploitative harvesting can lower stand quality in the short term and diminish forest productivity over the long term. In 2003, a rehabilitation experiment was installed in a southern hardwood stand on a bottomland te...Exploitative harvesting can lower stand quality in the short term and diminish forest productivity over the long term. In 2003, a rehabilitation experiment was installed in a southern hardwood stand on a bottomland terrace site, degraded by periodic exploitative cutting, to test the effectiveness of overstory removal and oak enrichment planting for improving stand quality and composition. Overstory removal treatments included clearcutting, stand improvement partial cutting, and an uncut control. Overstory treatment units were either planted with Nuttall oak (Quercus texana) seedlings or not planted. We revisited this study in 2017 to assess the outcome of oak enrichment planting across levels of overstory removal. Results in year 14 indicated poor survival of planted oaks under all overstory removal treatments (14% - 24%) and minimal height growth (0.3 m in 13 years) in areas treated with partial cutting and in uncut areas. Growth performance of planted oaks was significantly enhanced by clearcutting (p < 0.01). However, the overwhelming response of natural oak regeneration initiated by clearcutting trumped the contribution from enrichment planting on this low quality bottomland terrace site. Enrichment planting of Nuttall oak did not increase oak regeneration success in our study. The ineffectiveness of enrichment planting in this study was likely related to the shady understory of partially cut stands and intense competition in clearcuts. Additional treatments, such as pre-planting site preparation and post-planting release may be necessary for enhancing and maintaining competitiveness of planted red oak seedlings on similar sites.展开更多
The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a charac...The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a characteristic density reaching above 700 kg/m^(3).Therefore,the objective of this study was to examine whether the depth adjustment factor stipulated in EC5 is valid for Malaysian hardwood timbers.Six timber species were selected for this study,namely Kapur(Dryobalanops C.F.Gaertn.),Kempas(Koompassia Maingay ex Benth.),Keruing(Dipterocarpus C.F.Gaertn.),Light red meranti(Shorea Roxb.ex C.F.Gaertn.),Geronggang(Cratoxylum Blume)and Balau(Shorea Roxb.ex C.F.Gaertn.).The determination of bending strength and characteristic density was conducted according to BS EN 408:2010 and BS EN 384:2016,respectively.A graph for mean bending strength vs.(150/h)was plotted for each timber species.The power function was selected to analyze the relationship between the two variables.The power of the regression equations varied depending on the characteristic density of the timber species.For species with a characteristic density below 700 kg/m^(3),such as Kapur,Keruing,and Light red meranti,the power was between 0.16 to 0.17.In contrast,for species having a characteristic density above 700 kg/m^(3),namely Kempas and Balau,the power was higher at 0.23 and 0.24,respectively.Geronggang was an exception to this pattern.These values are close to the depth adjustment factor given in EC5,which is 0.2.Based on the results,it can be suggested that the adjustment factor of 0.2 is also applicable to Malaysian hardwood timbers with a characteristic density above 700 kg/m^(3).展开更多
In the northeastern United States, whole-tree harvesting is widely used to supply fuel to biomass energy facilities, but questions remain regarding its long-term sustainability. We have previously reported findings in...In the northeastern United States, whole-tree harvesting is widely used to supply fuel to biomass energy facilities, but questions remain regarding its long-term sustainability. We have previously reported findings indicating no short-term decrease in forest productivity in whole-tree harvested sites when compared with similar conventionally (stem-only) harvested sites. Here we present additional results of the same study, but focus on the effect harvest treatment has on the species composition of the regenerating forest. Within northern hardwood forests in central New Hampshire and western Maine, regeneration surveys were conducted on four (4) small clearcuts in 2010 and twenty-nine (29) small clearcuts in 2011. The species and diameter of trees > 2 m in height were recorded within 1 m or 2 m-radius plots and used to calculate the biomass fraction of each species. The 2010 study additionally measured the density of trees 2 m in height and the diversity of understory non-tree species. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine the effect of harvest treatment had on community-wide tree species composition. Potential differences were also examined on a species-by-species basis. Both analytic methods indicated no significant differences in species composition of tree species or understory communities. Within the limits of our data, we conclude that no significant effects of residue removal on species composition are observed within our sample of northern hardwood sites at this early stage of stand development.展开更多
The Beijing Chinese-Style Furniture Factory produces hardwood furniture from choice timber, which has been enjoying a high reputation both inside and outside the country. Hardwood furniture is mainly made of red sanda...The Beijing Chinese-Style Furniture Factory produces hardwood furniture from choice timber, which has been enjoying a high reputation both inside and outside the country. Hardwood furniture is mainly made of red sandalwood, pear wood,展开更多
The effect of four additives (surfactants and dispersant) that were supplied by Hercules Chemicals Singapore Pte Ltd on kraft pulping and bleaching of Eucalyptus camaldulensis and Acacia mangium has been studied. The ...The effect of four additives (surfactants and dispersant) that were supplied by Hercules Chemicals Singapore Pte Ltd on kraft pulping and bleaching of Eucalyptus camaldulensis and Acacia mangium has been studied. The use of additives results in a more removal of extractives, and in a more uniform cook with lower screen rejects in eucalyptus, lower residual alkali, and in an improvement in brightness of eucalyptus pulps. At low additive charge level, a reduction of kappa number generated without clear loss of pulp yield in acacia cook.展开更多
Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an...Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an important step in this regard. Ferric sulphate is a common, cheap and non-toxic Lewis acid that has been used to catalyse reactions such as wood depolymerisation. In this work, ferric sulphate was used to help the production of HMF and furfural from hardwood and softwood pulps. It was found that for hardwood pulp, the use of ferric sulphate alone gave a maximum HMF yield of 31.6 mol-%. The addition of the ionic liquid [BMIM]Cl or HCl as co-catalysts did not lead to an increase in the yields obtained. A prior decationisation step, however, resulted in HMF yields of 50.4 mol-%. Softwood pulp was harder to depolymerise than hardwood, with a yield of 28.7% obtained using ferric sulphate alone. The maximum HMF yield from softwood, 37.9 mol-%, was obtained using a combination of ferric sulphate and dilute HCl. It was thus concluded that ferric sulphate is a promising catalyst for HMF synthesis from cellulosic biomass.展开更多
基金Supported by National Key Technology R&D Program during the 11th Five-year Plan Period(2006BAD32B01)~~
文摘[Objective] The experiment was aimed to select effective and economical media for container seedling of triploid clones of Populus tomentosa that was carried out. [Method] The sandy loam, peat, perlite, vermiculite, riversand, sludge were taken as media of hardwood cutting and survival rate, seedling height were taken as indexes to select media for container seedling of triploid clones of Populus tomentosa. [Result] Different mixedmedia had great influence on survival rates of container seedlings. Taking peat and vermiculite with the proportion of 5∶2 (M10) or peat ,vermiculite with the proportion of 7∶2 (M11) or sandy loam (M1) as media would generate higher cutting survival rate that was higher than 90.0%. There were significant differece in height increments of container seedlings. Taking sandy loam, peat and vermiculite with the proportion of 6∶2∶2(M5)or sandy loam (M1), seedling height of 60-days the seedling was over 37.0 cm. [Conclusion] According to cost analysis of nursery medium, the optimum medium for hardwood cuttings container seedling-raising of triploid clones of Populus tomentosa was sandy loam.
基金Supported by Science and Technology Support Program during the Twelfth Five-year Plan(2013BAD01B06)~~
文摘[Objective] Hard-branch cutting propagation technology of Fraxinus was studied under different environmental conditions. [Method] An orthogonal test was designed based on 1-year-old clones of F. pennsylvanica Marsh Lula 5. Under dif- ferent growth hormones, hormone concentrations and processing time, F. velutina Lula 2 and F. pennsy/vanica Marsh Yuanla 2 were treated by vacuum pump for 10 min, [Result] The decreasing order of cutting survival rates of Lula 5 under different etnvironments was small plastic flowerpot (94.4%), nutrition cup (92.8%), sand tray (56.1%), and cuffings treated with 100 mg/L ABT, for 2 h, 200 mg/L ABT, for 4 h and 100 mg/L IBA for 6 h under large nutrition cup environment grew the best, showing a survival rate of 100%. Lula 2 and Yuanla 2 were subjected to vacuum pump treatment, the survival rate of cuttings under the sand tray environment was averagely 29%; and under the large plastic flowerpot environment, the survival rate of cuttings was averagaly 64.4%, and cuttings of Lula 2 treated with vacuum pump for 10 min in 200 mg/L ABTI showed a survival rate up to 95%, which was the highest among all treatments. It could be seen that whether cuttings were treated with vacuum pump, the survival rate of cuttings in sand tray was lower than those under other environments, while there was no big difference in survival rate of cut- tings between the nutrition cup and plastic flowerpot environments. [Conclusion] This study is of great significance to improvement of cutting propagation coefficient.
文摘Unlike fire or insect outbreaks, for which a suppression program can be implemented, it is impossible to prevent a windstorm event or stop it while it is occurring. Reducing stand susceptibility to windstorms requires a good understanding of the factors affecting this susceptibility. Distinct species- and size-related differences in stem windthrow susceptibility are difficult to obtain because it is impossible to distinguish their relative effects from those of wind intensity. Using a damage assessment database (60 20-metre radius plots) acquired after an exceptional wind storm in Western Quebec in 2007, we developed an approach in which proportions of windthrown sugar maple poles were used as bio-indicators of wind intensities affecting the plots. We distinguished between single and interactive effects of wind intensity, species, stem size, and local basal area on stem windthrow susceptibility. The best logistic regression model predicting stem windthrow included the wind intensity bio-indicator, species, basal area, and the species by diameter at breast height (DBH, 1.3 m) interaction. Stem windthrow probability generally increased with DBH and decreased with basal area. Species wind-firmness was ordered as: yellow birch > sugar maple = eastern hemlock = American beech > ironwood > basswood = other hardwoods = other softwoods. Our method remained an indirect method of measuring wind intensity and its real test would require a comparison with anemometer measurements during a windstorm. Despite its indirect nature, the method is both simple and ecologically sound. Hence, it opens the door to conducting similar windthrow studies in other ecosystems.
文摘The main characteristics of energy environment, energy products, primary productivity and basic process ofenergy flow for three-hardwood forest(Juglans mandshurica, Fraxinus mandshurica, and Phellodendron amurense) werestudied. The research was mainly hased on the thcory and method of community energetics, dealing with fixed position,quantitative test and expcrimental analysis. The time-space dynamics of sun-radiation in three-hardwood forest were measured and the energy compartment model was set up. his rescarch work provided a scientitic basis for the exploitation, utilization and management of three-hardtwood forest.
文摘Wood is composed of mostly hollow, elongated, spindle-shaped cells that are arranged parallel to each other along the trunk of a tree. The characteristics of these fibrous cells and their arrangement affect strength properties, appearance, resistance to penetration by water and chemical solutions, resistance to decay and many other properties. The characterisation of wood helps in identifying them. In this work, we studied the anatomical properties of three lesser utilised Ghanaian hardwood species namely Albizia ferruginea (Guill. & Perr.) Benth, Blighia sapida K. D. Koenig and Sterculia rhinopetala K. Schum using the light microscope and scanning electron microscope (SEM). Anatomical features studied were fiber length, double fiber wall thickness, fiber proportion, vessel diameter and proportion, rays and axial parenchyma proportions. We observed that the use of SEM in studying the anatomical or ultra-structural aspects of wood gave a clearer understanding of the features and structures found in wood. Anatomical features such as presence of crystals and absence of axial parenchyma in Blighia sapida and the thick wall fibers of Sterculia rhinopetala were better understood.
文摘A process-based, biological model is presented that simulates soil nitrogen (N) mineralization and nitrification in two northern hardwood forest ecosystems in the Upper Peninsula of Michigan. The soil system is divided into two compartments (forest floor and mineral soil) since quantity and quality of the organic substrate, and the important driving variables (temperature and moisture) for the model vary between these two compartments. The model focuses on the central position of microorganisms in the N mineralization and nitrification processes, and the use of multiplicative factors to account for the effect of temperature, moisture and carbon(C):N ratio on these processes.The model has been validated with data from two northern hardwood stands in the Upper Peninsula of Michigan. A close agreement between calculated and observed monthly means was obtained in both stands, especially for net N mineralization, which plays a very impormnt role in determining available N. The nitrification rates had relatively larger variation than the N mineralization rates, but the model adequately described the seasonal trends of the observed values. A simple sensitivity analysiwas performed to assess the response of the model to changes in important variables (temperature, moisture, organic N, and C:N ratio) between the two study sites. This analysis showed that increased temperature and higher organic N levels consistently increased N mineralization and nitrification in the both stands. The model's results were most sensitive to moisture changes in forest floor, but were not sensitive to moisture changes in the mineral soil. In contrast, C:N ratio was influential in the mineral soil, but did not have any effect in the forest floor.
基金financed by fellowships from the Fred M.van Eck Foundation and the Alliance for Graduate Education and Professoriate (AGEP) at Purdue University
文摘Drought periods are becoming more extreme worldwide and the ability of plants to contribute towards atmospheric flux is being compromised. Properly functioning stomata provide an exit for water that has been absorbed by the roots, funneled into various cell parts, and eventually released into the atmosphere via transpiration. By observing the effects that weather conditions such as climate change may have on stomatal density, distribution, and functioning, it may be possible to elucidate a portion of the mechanisms trees use to survive longer periods of water stress. This study analyzed stomatal density (SD), stomatal conductance (gs ), CO2 assimilation (A), instantaneous water-use efficiency (WUEi ), and transpiration (E) rates in six native tree species in the Midwestern USA and showed that trees within the same ecotype followed similar trends, but that trees within the same family did not when exposed to identical greenhouse conditions. Naturally drought tolerant tree species demonstrated lower g s and higher WUEi , while intolerant species had higher SD. This study showed negative or no correlation between SD and g s , A, E, and WUEi and positive correlations between E and A and gs and E.
文摘The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data.
基金supported by Research Joint Venture Agreement 12-JV-11242307129 “Long-Term Field Measurements on the Bartlett and Massabesic Experimental Forests,” and Research Joint Venture Agreement 17-JV-11242307062 “Long-Term Research in Northern Forests”provided by the New Hampshire Agricultural Experiment Station and the Bezos Earth Fundsupported by the USDA National Institute of Food and McIntire-Stennis Project 7003549
文摘We analyzed over 8 decades of change in forest composition(represented by species proportion of basal area)and size class from more than 400 permanent plots located on the Bartlett Experimental Forest in the White Mountains of New Hampshire.These data represent one of the longest-term landscape-scale records of forest change based on permanent plots in North America.We analyzed the plots based on elevation class,land type indicating assumed successional direction(grouped into coniferous and deciduous),and inventory period within managed and unmanaged portions of the forest.An ongoing shift from small-to large-diameter stems is clear across all species,in response to the overall aging of the forest following exploitative harvesting in the 19th century.Major compositional changes include a continuing decline in shade-intolerant species(paper birch and aspen),along with the mid-tolerant yellow birch.An increase in red maple abundance through the early 1990s has leveled off or reversed.Among shade-tolerant species,increases in beech and red spruce were largely consistent with assumed land type on unmanaged plots,but heavy marking against diseased beech on managed plots restricted increase of that species.Sugar maple declined in abundance except where silvicultural intervention helped maintain it.By contrast,eastern hemlock showed a continuing expansion at all elevations below 600 m.The data continue to show little or no evidence of upward migration of species,despite evidence of recent regional change in climate.However,the BEF is poised for substantial changes when emerald ash borer and hemlock woolly adelgid,both of which are known to infest nearby areas,do arrive.
文摘Resilience is a key function that affects an ecosystem’s ability to recover from disturbance. Understanding the extent to which forest communities recover after a long period of disturbance without direct intervention is important to provide context for considering ecosystem response to disturbance regimes. Species composition and structure were recorded on bottomland hardwood stands that were once inland and freshwater tidal rice fields. We sampled 17 old-field sites and 7 reference sites across three geomorphic settings. The old-field sites ranged from 30 to 120 years since agricultural abandonment. A total of 89 species were found across the old field sites and reference sample areas. Of that total, trees comprised 33 species, shrubs—5 species, and vine/herbs/forbs—51 species. Using field data, combined with stand inventory records, aerial photography (1936-2010), and high-resolution LiDAR imagery, we chronicled the evolution of the forest since the cessation of agriculture. Our findings demonstrate how Pinus taeda seeded directly after the rice fields went to fallow;and this conversion of bottomland swamp to rice to pine was a direct result of water management embankments constructed across the landscape to aid in crop irrigation. The remnant water management features may still alter flooding patterns thereby affecting development of Taxodium distichum and Nyssa aquatica in the old-fields. These results suggest, that over the 100+ years forest stands on the Santee Experimental Forest have developed to represent bottomland hardwoods characteristic of the southeastern United States coastal plain.
文摘To study the effects of stand development and overstory composition on stand age structure, we sampled 32 stands representing conifer, mixedwood, and hardwood stand types, ranging in ages from 72 to 201 years on upland mesic sites in northwestern Ontario. We defined the stages of stand development as: stem exclusion/canopy transition, canopy transition, canopy transition/gap dynamics, and gap dynamics. Stand age structure of conifer stands changed from bimodal, bimodal, reverse-J, and bimodal, respectively, through the stages of stand development. Mixedwood and hardwood stands revealed similar trends, with the exception of missing the canopy transition/gap dynamic stage in mixedwoods. Canopy transition/gap dynamic stage in hardwoods showed a weaker reverse-J distribution than their conifer counterparts. The results suggest that forest management activities such as partial and selection harvesting and seed-tree systems may diversify standard landscape-level age structures and benefit wildlife, hasten the onset of old-growth, and create desired stand age structures. We also recommend that the determination of old-growth using the following criteria in the boreal forest: 1) canopy breakdown of pioneering cohort is complete and stand is dominated by later successional tree species, and 2) stand age structure is bimodal, with dominating canopy trees that fall within a relatively narrow range of age and height classes and a significant amount of understory regeneration.
基金funded by the Ministère des Forêtsde la Faune et des Parcs(Quebec,Canada),project#142332185。
文摘Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees bearing TreMs(hereafter,"TreM-trees")also remain to be determined.As logging practices can lead to a loss of TreM-trees and of their associated biodiversity,it is essential to identify the factors explaining TreM occurrence to better integrate them into forest management.We therefore inventoried TreMs in 40.5-ha survey strips in northern hardwood forests in Quebec,Canada,while recording the spatial location of each tree.Two strips were located in unmanaged oldgrowth forests,and 2 were in forests managed under selection cutting.All 4 stands were dominated by sugar maple(Acer saccharum Marsh.)and American beech(Fagus grandifolia Ehrn.).Beech bark disease,an exotic pathology,was observed in all the strips.Results:Large diameter at breast height and low tree vigor were the main characteristics explaining the presence of TreMs at the tree scale.TreM-trees presented slight spatial aggregation patterns.These aggregates,however,were not well-defined and were generally constituted by a large number of trees bearing few different types of TreMs.Two TreM classes(broken branch or top and woodpecker lodge)also presented a spatial aggregation.Logging practices had no significant effect on TreM occurrence.Beech bark disease increased the frequency of senescent beeches.The impact of this pathology on TreMs was however mitigated by the small size of infected trees and probably by the short time elapsed since its appearance.Conclusion:The factors explaining the presence and abundance of TreMs on trees has so far been little studied in North American hardwood forests.Our results highlight that TreM-tree characteristics in the surveyed forests are consistent with those of previous studies conducted in other forest types and regions(e.g.,Europe or Northwestern America).To our knowledge,this study is also the first to identify a spatial aggregation of TreM-trees and of specific TreM classes.It will be nevertheless necessary to determine whether the small impact of logging activities we observed results from current or past management practices.
文摘The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.
文摘Exploitative harvesting can lower stand quality in the short term and diminish forest productivity over the long term. In 2003, a rehabilitation experiment was installed in a southern hardwood stand on a bottomland terrace site, degraded by periodic exploitative cutting, to test the effectiveness of overstory removal and oak enrichment planting for improving stand quality and composition. Overstory removal treatments included clearcutting, stand improvement partial cutting, and an uncut control. Overstory treatment units were either planted with Nuttall oak (Quercus texana) seedlings or not planted. We revisited this study in 2017 to assess the outcome of oak enrichment planting across levels of overstory removal. Results in year 14 indicated poor survival of planted oaks under all overstory removal treatments (14% - 24%) and minimal height growth (0.3 m in 13 years) in areas treated with partial cutting and in uncut areas. Growth performance of planted oaks was significantly enhanced by clearcutting (p < 0.01). However, the overwhelming response of natural oak regeneration initiated by clearcutting trumped the contribution from enrichment planting on this low quality bottomland terrace site. Enrichment planting of Nuttall oak did not increase oak regeneration success in our study. The ineffectiveness of enrichment planting in this study was likely related to the shady understory of partially cut stands and intense competition in clearcuts. Additional treatments, such as pre-planting site preparation and post-planting release may be necessary for enhancing and maintaining competitiveness of planted red oak seedlings on similar sites.
基金funded by Geran Penyelidikan Khas(GPK),(600-RMC/GPK 5/3(071/2020)).
文摘The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a characteristic density reaching above 700 kg/m^(3).Therefore,the objective of this study was to examine whether the depth adjustment factor stipulated in EC5 is valid for Malaysian hardwood timbers.Six timber species were selected for this study,namely Kapur(Dryobalanops C.F.Gaertn.),Kempas(Koompassia Maingay ex Benth.),Keruing(Dipterocarpus C.F.Gaertn.),Light red meranti(Shorea Roxb.ex C.F.Gaertn.),Geronggang(Cratoxylum Blume)and Balau(Shorea Roxb.ex C.F.Gaertn.).The determination of bending strength and characteristic density was conducted according to BS EN 408:2010 and BS EN 384:2016,respectively.A graph for mean bending strength vs.(150/h)was plotted for each timber species.The power function was selected to analyze the relationship between the two variables.The power of the regression equations varied depending on the characteristic density of the timber species.For species with a characteristic density below 700 kg/m^(3),such as Kapur,Keruing,and Light red meranti,the power was between 0.16 to 0.17.In contrast,for species having a characteristic density above 700 kg/m^(3),namely Kempas and Balau,the power was higher at 0.23 and 0.24,respectively.Geronggang was an exception to this pattern.These values are close to the depth adjustment factor given in EC5,which is 0.2.Based on the results,it can be suggested that the adjustment factor of 0.2 is also applicable to Malaysian hardwood timbers with a characteristic density above 700 kg/m^(3).
文摘In the northeastern United States, whole-tree harvesting is widely used to supply fuel to biomass energy facilities, but questions remain regarding its long-term sustainability. We have previously reported findings indicating no short-term decrease in forest productivity in whole-tree harvested sites when compared with similar conventionally (stem-only) harvested sites. Here we present additional results of the same study, but focus on the effect harvest treatment has on the species composition of the regenerating forest. Within northern hardwood forests in central New Hampshire and western Maine, regeneration surveys were conducted on four (4) small clearcuts in 2010 and twenty-nine (29) small clearcuts in 2011. The species and diameter of trees > 2 m in height were recorded within 1 m or 2 m-radius plots and used to calculate the biomass fraction of each species. The 2010 study additionally measured the density of trees 2 m in height and the diversity of understory non-tree species. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine the effect of harvest treatment had on community-wide tree species composition. Potential differences were also examined on a species-by-species basis. Both analytic methods indicated no significant differences in species composition of tree species or understory communities. Within the limits of our data, we conclude that no significant effects of residue removal on species composition are observed within our sample of northern hardwood sites at this early stage of stand development.
文摘The Beijing Chinese-Style Furniture Factory produces hardwood furniture from choice timber, which has been enjoying a high reputation both inside and outside the country. Hardwood furniture is mainly made of red sandalwood, pear wood,
文摘The effect of four additives (surfactants and dispersant) that were supplied by Hercules Chemicals Singapore Pte Ltd on kraft pulping and bleaching of Eucalyptus camaldulensis and Acacia mangium has been studied. The use of additives results in a more removal of extractives, and in a more uniform cook with lower screen rejects in eucalyptus, lower residual alkali, and in an improvement in brightness of eucalyptus pulps. At low additive charge level, a reduction of kappa number generated without clear loss of pulp yield in acacia cook.
文摘Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an important step in this regard. Ferric sulphate is a common, cheap and non-toxic Lewis acid that has been used to catalyse reactions such as wood depolymerisation. In this work, ferric sulphate was used to help the production of HMF and furfural from hardwood and softwood pulps. It was found that for hardwood pulp, the use of ferric sulphate alone gave a maximum HMF yield of 31.6 mol-%. The addition of the ionic liquid [BMIM]Cl or HCl as co-catalysts did not lead to an increase in the yields obtained. A prior decationisation step, however, resulted in HMF yields of 50.4 mol-%. Softwood pulp was harder to depolymerise than hardwood, with a yield of 28.7% obtained using ferric sulphate alone. The maximum HMF yield from softwood, 37.9 mol-%, was obtained using a combination of ferric sulphate and dilute HCl. It was thus concluded that ferric sulphate is a promising catalyst for HMF synthesis from cellulosic biomass.