In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a resu...As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.展开更多
Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/...Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/Simulink environment When the supply voltages are balanced and sinusoidal, the two control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The compensation capabilities are not equivalent, with p - q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with PI controller and also with Fuzzy controller for both p-q and Id-Iq control strategies under different main voltages. Extensive Simulations are carried out with PI as well as fuzzy controller for both p-q and Id - Iq control strategies by considering different voltage conditions and adequate results were presented. On owing Id - Iq method with fuzzy logic controller gives away an out-standing performance under any voltage conditions (balanced, un-balanced, balanced and non-sinusoidal).展开更多
To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled convert...To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled converter will be used to develop the power supply system.However, because of its inner nonlinear feature, the current harmonics and the reactive power are injected into the AC power supply system. To improve the quality of the power supply system for RSSMs, an improved synchronous control strategy is suggested for the superconducting magnet power supply system, which comprises four series-connected six-pulse converters fed by a phase-shifting transformer, respectively. According to the proposed control strategy, the basic unit is two 12-pulse converters and the control method will be changed in terms of loadfluctuations which are represented by the per unit value of converter output voltage. As a result,harmonic is greatly reduced but the power factor is also high.展开更多
The main objective of this paper is to develop Fuzzy controller to analyse the performance of instantaneous real active and reactive current (id-iq) control strategy for extracting reference currents of shunt active f...The main objective of this paper is to develop Fuzzy controller to analyse the performance of instantaneous real active and reactive current (id-iq) control strategy for extracting reference currents of shunt active filters under balanced, un-balanced and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, the all control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The p-q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with Fuzzy controller for id-iq control strategy under different main voltages. The 3-ph 4-wire shunt active filter (SHAF) system is also implemented on a Real Time Digital Simulator (RTDS Hardware) to further verify its effectiveness. The detailed simulation and RTDS Hardware results are included.展开更多
In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distributio...In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distribution static com-pensator which protects power quality problems in currents.Distribution Static Compensator(DSTATCOM)aid to enhances power factor and removes total har-monic distortion which is drawn from non-linear load.The D–Q reference theory based hysteresis current controller is employed to generate reference current for compensation of harmonics and reactive power,additionally Probabilistic Neural Network(PNN)classifier is used which easily separates exact harmonics.In the meantime fuzzy logic controller is also used to maintain capacitor DC-link poten-tial.When comparing to PI controller it decreases steady state time and reduces maximum peak overshoot.Cascaded H-bridge multilevel inverter converts direct current to Alternating current,through inductor opposite harmonics are injected in Power Control Centre reduces source current harmonics and reactive power.The implementation of CHBMLI in distribution STATic COMpensator simulation model is simulated by means of MATLAB.展开更多
In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind...In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind-solar hydrogen storage(alkaline electrolyzer(AE)-hydrogen storage tank-battery-proton exchange membrane fuel cell(PEMFC))coupled system architecture.A grid-connected compensation/consumption hierarchical control strategy based on wind-solar hydrogen coupling is proposed.During the grid-connected process of wind and solar power generation,the upper-level control allocates power reasonably to the hydrogen energy storage system by dispatching the power of wind and solar power generation.At the same time,the control strategy ensures that the pressure of the hydrogen storage tank is within the safety range limit,and the lower control completes the control of the duty cycle of the converter in the system.Due to the randomness of wind and light,the hydrogen energy storage system is divided into three working conditions,namely compensation,balance and consumption,and five working modes.The simulation results show that the hydrogen energy storage system compensates for 40%of the power shortage,and consumes 27.5%of the abandoned wind and solar energy,which improves the utilization rate of clean energy.展开更多
The main objective of this paper is to develop PI and Fuzzy logic controllers to analyse the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shun...The main objective of this paper is to develop PI and Fuzzy logic controllers to analyse the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters under balanced, un-balanced and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, then all controllers converge to the same compensation characteristics. However, when the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out;simulations were performed with balance, unbalanced and non sinusoidal conditions. Simulation results validate the dynamic behaviour of Fuzzy logic controller over PI controller. The 3-ph 4-wire SHAF system is also implemented on a Real Time Digital Simulator (RTDS Hardware) to further verify its effectiveness. The detailed simulation and RTDS Hardware results are included.展开更多
An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hy...An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hybrid-Active Power-Filter(HAPF)is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor(PF)and Total–Hormonic Distortion(THD)and the performance of a system.This work proposed a soft-computing technique based on Particle Swarm-Optimization(PSO)and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods.Moreover,the control algorithms are implemented for an instantaneous reactive and active current(Id-Iq)and power theory(Pq0)in SIMULINK.To prevent the degradation effect of disturbances on the system’s performance,PS0-PI is applied in the inner loop which generate a required dc link-voltage.Additionally,a comparative analysis of both techniques has been presented to evaluate and validate the performance under balanced load conditions.The presented result concludes that the Adaptive Fuzzy PI controller performs better due to the non-linearity and robustness of the system.Therefore,the gains taken from a tuning of the PSO based PI controller optimized with Fuzzy Logic Controller(FLC)are optimal that will detect reactive power and harmonics much faster and accurately.The proposed hybrid technique minimizes distortion by selecting appropriate switching pulses for VSI(Voltage Source Inverter),and thus the simulation has been taken in SIMULINK/MATLAB.The proposed technique gives better tracking performance and robustness for reactive power compensation and harmonics mitigation.As a result of the comparison,it can be concluded that the PSO-basedAdaptive Fuzzy PI system produces accurate results with the lower THD and a power factor closer to unity than other techniques.展开更多
In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
The charger of electric vehicle is a power electronic device which consists of rectifying devices and DC-DC converters. This nonlinear diode rectifier circuit has low power factor and high harmonic content. In order t...The charger of electric vehicle is a power electronic device which consists of rectifying devices and DC-DC converters. This nonlinear diode rectifier circuit has low power factor and high harmonic content. In order to improve power factor and reduce the harmonic distortion rate of the AC side current, single-phase non-controlled rectifier charger needs to install the active power factor correction device. A piece of power system analysis software which is called PSCAD is used in modeling of an EV charger which contains Boost-APFC. By means of simulation and analysis, differences of APFC characteristics between the hysteresis current control mode and average current control mode which has an influence on the power grid are compared. The consequence of simulation shows that the two control strategies achieve power factor correction and harmonic reduction requirements;Boost type power conversion circuit employs the average current control mode is better, which has following features: relatively faster settling time of the output voltage, relatively smaller overshoot, lower current harmonic distortion rate on AC side, lower switching frequency and better control effect.展开更多
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
文摘As more and more variable frequency drives (VFDs), electronic ballasts, battery chargers, and static Var compensators are installed in facilities, the problems related to harmonics are expected to get worse. As a result Active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control strategies. This paper presents detailed analysis to compare and elevate the performance of two control strategies for ex-tracting reference currents of shunt active filters under balanced, un-balanced and non-sinusoidal conditions by using Fuzzy controller. The well known methods, instantaneous real active and reactive power method (p-q) and active and reactive current method (id-iq) are two control methods which are extensively used in active filters. Extensive Simulations are carried out with fuzzy controller for both p-q and Id-Iq methods for different voltage conditions and adequate results were presented. Simulation results validate the superior per-formance of active and reactive current control strategy (id-iq) with fuzzy controller over active and reactive power control strategy (p-q) with fuzzy controller.
文摘Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions with PI and Fuzzy Controllers in MATLAB/Simulink environment When the supply voltages are balanced and sinusoidal, the two control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The compensation capabilities are not equivalent, with p - q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with PI controller and also with Fuzzy controller for both p-q and Id-Iq control strategies under different main voltages. Extensive Simulations are carried out with PI as well as fuzzy controller for both p-q and Id - Iq control strategies by considering different voltage conditions and adequate results were presented. On owing Id - Iq method with fuzzy logic controller gives away an out-standing performance under any voltage conditions (balanced, un-balanced, balanced and non-sinusoidal).
基金supported by National Natural Science Foundation of China (No. 51877001)
文摘To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled converter will be used to develop the power supply system.However, because of its inner nonlinear feature, the current harmonics and the reactive power are injected into the AC power supply system. To improve the quality of the power supply system for RSSMs, an improved synchronous control strategy is suggested for the superconducting magnet power supply system, which comprises four series-connected six-pulse converters fed by a phase-shifting transformer, respectively. According to the proposed control strategy, the basic unit is two 12-pulse converters and the control method will be changed in terms of loadfluctuations which are represented by the per unit value of converter output voltage. As a result,harmonic is greatly reduced but the power factor is also high.
文摘The main objective of this paper is to develop Fuzzy controller to analyse the performance of instantaneous real active and reactive current (id-iq) control strategy for extracting reference currents of shunt active filters under balanced, un-balanced and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, the all control strategies are converge to the same compensation characteristics;However, the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The p-q control strategy unable to yield an adequate solution when source voltages are not ideal. Extensive simulations are carried out with Fuzzy controller for id-iq control strategy under different main voltages. The 3-ph 4-wire shunt active filter (SHAF) system is also implemented on a Real Time Digital Simulator (RTDS Hardware) to further verify its effectiveness. The detailed simulation and RTDS Hardware results are included.
文摘In recent day’s power distribution system is distress from acute power quality issues.In this work,for compensating Power Quality(PQ)disturbances a seven level cascaded H-bridge inverter is implemented in distribution static com-pensator which protects power quality problems in currents.Distribution Static Compensator(DSTATCOM)aid to enhances power factor and removes total har-monic distortion which is drawn from non-linear load.The D–Q reference theory based hysteresis current controller is employed to generate reference current for compensation of harmonics and reactive power,additionally Probabilistic Neural Network(PNN)classifier is used which easily separates exact harmonics.In the meantime fuzzy logic controller is also used to maintain capacitor DC-link poten-tial.When comparing to PI controller it decreases steady state time and reduces maximum peak overshoot.Cascaded H-bridge multilevel inverter converts direct current to Alternating current,through inductor opposite harmonics are injected in Power Control Centre reduces source current harmonics and reactive power.The implementation of CHBMLI in distribution STATic COMpensator simulation model is simulated by means of MATLAB.
基金Xi’an Key Laboratory of Clean Energy(No.2019219914SYS014CG036)Natural Science Foundation of Xi’an City(No.XA2020-CXRCFW-0247)Yulin Industry-University-Research Cooperation Project(No.2019-173)。
文摘In the process of grid-connected wind and solar power generation,there are problems of high rate of abandoning wind and light and insufficient energy.In order to solve these problems,we construct a grid-connected wind-solar hydrogen storage(alkaline electrolyzer(AE)-hydrogen storage tank-battery-proton exchange membrane fuel cell(PEMFC))coupled system architecture.A grid-connected compensation/consumption hierarchical control strategy based on wind-solar hydrogen coupling is proposed.During the grid-connected process of wind and solar power generation,the upper-level control allocates power reasonably to the hydrogen energy storage system by dispatching the power of wind and solar power generation.At the same time,the control strategy ensures that the pressure of the hydrogen storage tank is within the safety range limit,and the lower control completes the control of the duty cycle of the converter in the system.Due to the randomness of wind and light,the hydrogen energy storage system is divided into three working conditions,namely compensation,balance and consumption,and five working modes.The simulation results show that the hydrogen energy storage system compensates for 40%of the power shortage,and consumes 27.5%of the abandoned wind and solar energy,which improves the utilization rate of clean energy.
文摘The main objective of this paper is to develop PI and Fuzzy logic controllers to analyse the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters under balanced, un-balanced and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, then all controllers converge to the same compensation characteristics. However, when the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out;simulations were performed with balance, unbalanced and non sinusoidal conditions. Simulation results validate the dynamic behaviour of Fuzzy logic controller over PI controller. The 3-ph 4-wire SHAF system is also implemented on a Real Time Digital Simulator (RTDS Hardware) to further verify its effectiveness. The detailed simulation and RTDS Hardware results are included.
基金This work was supported by the King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project number RSP-2021/184.
文摘An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hybrid-Active Power-Filter(HAPF)is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor(PF)and Total–Hormonic Distortion(THD)and the performance of a system.This work proposed a soft-computing technique based on Particle Swarm-Optimization(PSO)and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods.Moreover,the control algorithms are implemented for an instantaneous reactive and active current(Id-Iq)and power theory(Pq0)in SIMULINK.To prevent the degradation effect of disturbances on the system’s performance,PS0-PI is applied in the inner loop which generate a required dc link-voltage.Additionally,a comparative analysis of both techniques has been presented to evaluate and validate the performance under balanced load conditions.The presented result concludes that the Adaptive Fuzzy PI controller performs better due to the non-linearity and robustness of the system.Therefore,the gains taken from a tuning of the PSO based PI controller optimized with Fuzzy Logic Controller(FLC)are optimal that will detect reactive power and harmonics much faster and accurately.The proposed hybrid technique minimizes distortion by selecting appropriate switching pulses for VSI(Voltage Source Inverter),and thus the simulation has been taken in SIMULINK/MATLAB.The proposed technique gives better tracking performance and robustness for reactive power compensation and harmonics mitigation.As a result of the comparison,it can be concluded that the PSO-basedAdaptive Fuzzy PI system produces accurate results with the lower THD and a power factor closer to unity than other techniques.
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
文摘The charger of electric vehicle is a power electronic device which consists of rectifying devices and DC-DC converters. This nonlinear diode rectifier circuit has low power factor and high harmonic content. In order to improve power factor and reduce the harmonic distortion rate of the AC side current, single-phase non-controlled rectifier charger needs to install the active power factor correction device. A piece of power system analysis software which is called PSCAD is used in modeling of an EV charger which contains Boost-APFC. By means of simulation and analysis, differences of APFC characteristics between the hysteresis current control mode and average current control mode which has an influence on the power grid are compared. The consequence of simulation shows that the two control strategies achieve power factor correction and harmonic reduction requirements;Boost type power conversion circuit employs the average current control mode is better, which has following features: relatively faster settling time of the output voltage, relatively smaller overshoot, lower current harmonic distortion rate on AC side, lower switching frequency and better control effect.