A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensiona...A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensional Stokes flow in terms of a biharmonic function and a harmonic function. The earlier theorem for the Stokes flow due to fundamental singularities before a no-slip plane boundary is shown to be a special case of the present theorem. Furthermore, in terms of the Stokes stream function, a corollary of the theorem is also derived, providing a solution to the problem of the axisymmetric Stokes flow along a rigid plane with stick-slip boundary conditions. The formulae for the drag and torque exerted by the fluid on the boundary are established. An illustrative example is given.展开更多
A harmonic condition that can distinguish whether the dimension of spline space S 1 3( △ ) depends on the geometrical character of triangulation is presented, then on a type of general triangulation the dimension...A harmonic condition that can distinguish whether the dimension of spline space S 1 3( △ ) depends on the geometrical character of triangulation is presented, then on a type of general triangulation the dimension is got.展开更多
文摘A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensional Stokes flow in terms of a biharmonic function and a harmonic function. The earlier theorem for the Stokes flow due to fundamental singularities before a no-slip plane boundary is shown to be a special case of the present theorem. Furthermore, in terms of the Stokes stream function, a corollary of the theorem is also derived, providing a solution to the problem of the axisymmetric Stokes flow along a rigid plane with stick-slip boundary conditions. The formulae for the drag and torque exerted by the fluid on the boundary are established. An illustrative example is given.
文摘A harmonic condition that can distinguish whether the dimension of spline space S 1 3( △ ) depends on the geometrical character of triangulation is presented, then on a type of general triangulation the dimension is got.