A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the g...A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is advantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the percentage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in particular for a textural image it is 1/5.展开更多
文摘A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is advantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the percentage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in particular for a textural image it is 1/5.