Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great dem...Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.展开更多
Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective fun...Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective function with proper weighting is proposed and also its efficiency is compared with the objective function which is more similar to the proposed one. To enhance the ability of the SHE in eliminating high number of selected harmonics, at each level of the output voltage, one slot is created. The SHE problem is solved by imperialist competitive algorithm(ICA). The conventional SHE methods cannot eliminate the selected harmonics and satisfy the fundamental component in some ranges of modulation indexes. So, to surmount the SHE defect, a DC-DC converter is applied. Theoretical results are substantiated by simulations and experimental results for a 9-level multilevel inverter. The obtained results illustrate that the proposed method successfully minimizes a large number of identified harmonics which consequences very low total harmonic distortion of output voltage.展开更多
This paper concentrates on enhancing the productivity of the multilevel inverter and nature of yield voltage waveform. Seven level lessened switches topology has been actualized with just seven switches. Essential Swi...This paper concentrates on enhancing the productivity of the multilevel inverter and nature of yield voltage waveform. Seven level lessened switches topology has been actualized with just seven switches. Essential Switching plan and Selective Harmonics Elimination were executed to diminish the Total Harmonics Distortion (THD) esteem. Selective Harmonics Elimination Stepped Waveform (SHESW) strategy is executed to dispense with the lower order harmonics. Fundamental switching plan is utilized to control the switches in the inverter. The proposed topology is reasonable for any number of levels. The harmonic lessening is accomplished by selecting fitting switching angles. It indicates would like to decrease starting expense and unpredictability consequently it is able for modern applications. In this paper, third and fifth level harmonics have been disposed of. Simulation work is done utilizing the MATLAB/Simulink programming results have been displayed to accept the hypothesis.展开更多
Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to imp...Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.展开更多
This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted u...This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.展开更多
Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close si...Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close sinusoidal component and to lessen the harmonic distortion multilevel inverters developed. Mathematical methods, which were developed, are derivative based and need initial considerations. To overcome this, evolutionary algorithms, which are derivative free and accurate, were developed for obtaining multi levels of output voltage. The proposed work uses two evolutionary algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. These algorithms are used to generate the switching angles by satisfying the non linear transcendental equations that govern the low order harmonic components. A seven level cascaded full bridge inverter is designed using MATLAB/Simulink and the results validate the results for switching angles. The Total Harmonic Distortion (THD) value obtained for GA and PSO is 11.81% and 10.84% respectively. The solution obtained from GA algorithm was implemented in hardware using dsPIC controller to validate the simulation results. The THD value obtained for cascaded seven-level multilevel inverter in the hardware prototype is 25.9%.展开更多
有选择性的消谐波脉宽调制Selective H arm onic Elim inated-PW M ,简称SH E-PW M )方法具有开关频率小、输出波形质量好和调制比高的特点,是一种频率最优化的PW M 调制方法。本文在介绍三电平SH E-PW M 方法原理的基础上,讨论了如何采...有选择性的消谐波脉宽调制Selective H arm onic Elim inated-PW M ,简称SH E-PW M )方法具有开关频率小、输出波形质量好和调制比高的特点,是一种频率最优化的PW M 调制方法。本文在介绍三电平SH E-PW M 方法原理的基础上,讨论了如何采用DSP LF2407A 实现三电平SH E-PW M 调制的问题。实验结果验证了SH E-PW M 方法的特点。展开更多
考虑到传统二极管钳位型和电容钳位型拓扑应用于6 k V/10 k V高压变频领域时存在的诸多问题,提出了一种有源中点钳位式(ANPC)5电平变流器选择谐波消除脉宽调制(SHE-PWM)控制方法。在分析了ANPC 5电平拓扑各桥臂的基本结构的基础上,建立...考虑到传统二极管钳位型和电容钳位型拓扑应用于6 k V/10 k V高压变频领域时存在的诸多问题,提出了一种有源中点钳位式(ANPC)5电平变流器选择谐波消除脉宽调制(SHE-PWM)控制方法。在分析了ANPC 5电平拓扑各桥臂的基本结构的基础上,建立了ANPC拓扑相关数学模型;分析了5电平SHE-PWM的基本原理,构建了以消除低次谐波为目标的非线性方程组,并基于牛顿迭代法给出N=7时的SHE-PWM相关解域;针对ANPC拓扑存在的飞跨电容稳压问题,分析了飞跨电容的稳压原理,进而给出了冗余电压矢量调度方式。样机实验结果表明,所提ANPC 5电平拓扑SHE-PWM控制方法实现了低开关频率下变流系统的高效控制,在消除系统低次谐波的基础上,保证了直流电容和飞跨电容的稳压效果。展开更多
Harmonic content of the voltage source inverters is important and must be in the allowed ranges. Different method are proposed to decrease the Total Harmonic Distortion (THD) and caused to be sinusoidal the output vol...Harmonic content of the voltage source inverters is important and must be in the allowed ranges. Different method are proposed to decrease the Total Harmonic Distortion (THD) and caused to be sinusoidal the output voltage of inverters. One of these methods is using multilevel structure. In this structure many important parameters which are effective on voltage source inverter operation that among them we can mention to modulation index (MI). Variation of modulation index can change the THD. One of the harmonic reduction methods is using multilevel structure. In this paper, a sample 5-level SHE-PWM voltage source inverter is presented and all equation and choosing switching angles for elimination desired harmonics from different order. To investigate the effective parameters on the inverter operation, a typical 5-level inverter is simulated in PSPICE software. The simulation has been done for different values of modulation and its effect on the inverter operation is evaluated.展开更多
文摘Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.
文摘Selective harmonic elimination(SHE) in multilevel inverters is an intricate optimization problem that involves a set of nonlinear transcendental equations which have multiple local minima. A new advanced objective function with proper weighting is proposed and also its efficiency is compared with the objective function which is more similar to the proposed one. To enhance the ability of the SHE in eliminating high number of selected harmonics, at each level of the output voltage, one slot is created. The SHE problem is solved by imperialist competitive algorithm(ICA). The conventional SHE methods cannot eliminate the selected harmonics and satisfy the fundamental component in some ranges of modulation indexes. So, to surmount the SHE defect, a DC-DC converter is applied. Theoretical results are substantiated by simulations and experimental results for a 9-level multilevel inverter. The obtained results illustrate that the proposed method successfully minimizes a large number of identified harmonics which consequences very low total harmonic distortion of output voltage.
文摘This paper concentrates on enhancing the productivity of the multilevel inverter and nature of yield voltage waveform. Seven level lessened switches topology has been actualized with just seven switches. Essential Switching plan and Selective Harmonics Elimination were executed to diminish the Total Harmonics Distortion (THD) esteem. Selective Harmonics Elimination Stepped Waveform (SHESW) strategy is executed to dispense with the lower order harmonics. Fundamental switching plan is utilized to control the switches in the inverter. The proposed topology is reasonable for any number of levels. The harmonic lessening is accomplished by selecting fitting switching angles. It indicates would like to decrease starting expense and unpredictability consequently it is able for modern applications. In this paper, third and fifth level harmonics have been disposed of. Simulation work is done utilizing the MATLAB/Simulink programming results have been displayed to accept the hypothesis.
文摘Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.
文摘This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.
文摘Inverters are power electronic devices that change over DC to sinusoidal AC quantity. Be that as it may, in down to earth, these devices produce non-sinusoidal yield which contains harmonics, so as to blend a close sinusoidal component and to lessen the harmonic distortion multilevel inverters developed. Mathematical methods, which were developed, are derivative based and need initial considerations. To overcome this, evolutionary algorithms, which are derivative free and accurate, were developed for obtaining multi levels of output voltage. The proposed work uses two evolutionary algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. These algorithms are used to generate the switching angles by satisfying the non linear transcendental equations that govern the low order harmonic components. A seven level cascaded full bridge inverter is designed using MATLAB/Simulink and the results validate the results for switching angles. The Total Harmonic Distortion (THD) value obtained for GA and PSO is 11.81% and 10.84% respectively. The solution obtained from GA algorithm was implemented in hardware using dsPIC controller to validate the simulation results. The THD value obtained for cascaded seven-level multilevel inverter in the hardware prototype is 25.9%.
文摘有选择性的消谐波脉宽调制Selective H arm onic Elim inated-PW M ,简称SH E-PW M )方法具有开关频率小、输出波形质量好和调制比高的特点,是一种频率最优化的PW M 调制方法。本文在介绍三电平SH E-PW M 方法原理的基础上,讨论了如何采用DSP LF2407A 实现三电平SH E-PW M 调制的问题。实验结果验证了SH E-PW M 方法的特点。
文摘考虑到传统二极管钳位型和电容钳位型拓扑应用于6 k V/10 k V高压变频领域时存在的诸多问题,提出了一种有源中点钳位式(ANPC)5电平变流器选择谐波消除脉宽调制(SHE-PWM)控制方法。在分析了ANPC 5电平拓扑各桥臂的基本结构的基础上,建立了ANPC拓扑相关数学模型;分析了5电平SHE-PWM的基本原理,构建了以消除低次谐波为目标的非线性方程组,并基于牛顿迭代法给出N=7时的SHE-PWM相关解域;针对ANPC拓扑存在的飞跨电容稳压问题,分析了飞跨电容的稳压原理,进而给出了冗余电压矢量调度方式。样机实验结果表明,所提ANPC 5电平拓扑SHE-PWM控制方法实现了低开关频率下变流系统的高效控制,在消除系统低次谐波的基础上,保证了直流电容和飞跨电容的稳压效果。
文摘Harmonic content of the voltage source inverters is important and must be in the allowed ranges. Different method are proposed to decrease the Total Harmonic Distortion (THD) and caused to be sinusoidal the output voltage of inverters. One of these methods is using multilevel structure. In this structure many important parameters which are effective on voltage source inverter operation that among them we can mention to modulation index (MI). Variation of modulation index can change the THD. One of the harmonic reduction methods is using multilevel structure. In this paper, a sample 5-level SHE-PWM voltage source inverter is presented and all equation and choosing switching angles for elimination desired harmonics from different order. To investigate the effective parameters on the inverter operation, a typical 5-level inverter is simulated in PSPICE software. The simulation has been done for different values of modulation and its effect on the inverter operation is evaluated.