3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational acc...3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.展开更多
The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: ...The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: threaded tapered cylindrical (T1), triangular (T2) and square (T3) were used to produce the joints. The results indicate that the weld joints are notably affected by joining with different tool pin profiles. The triangular tool pin profile produces thebest metallurgicaland mechanical weld properties compared with other tool pin profiles. Besides, the lowest tensile strength and microhardness are obtained for the joint friction stir welded with square tool pin profile. It is observed that the smaller tool pin profile and shoulder diameter lead to narrow region of heat affected zone (HAZ) and a desired level of softening. The fracture surface examination shows that the joints are also affected when welding with different types of tool pin profiles. The fracture surface shows that the triangular specimen fails with a ductile fracture mode during the tensile test, while the brittle fracture modes are observed in the joints fabricated with other tool pin profiles (T1 and T3).展开更多
Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly ...Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly designed die structure. Finite volume numerical simulation was used to analyze the extrusion process of a hollow profile with porthole die and the problem of non-uniform material flow was found. Optimization was made to the originally designed die to solve the problem. Lower load, reasonable seaming location and even extruded forepart with uniform material flow in the optimized die extrusion were obtained. Guidelines to porthole die design were given and it is also concluded that finite volume method with Eulerian description avoids mesh regeneration and is suitable to numerical simulation of severe deformation processes, such as profile extrusion.展开更多
The high flexibility of profile bending with hyperelastic pad enables it to be a promising method for small lot or single part production, especially for space frame and roof-rail parts in automotive and aerospace ind...The high flexibility of profile bending with hyperelastic pad enables it to be a promising method for small lot or single part production, especially for space frame and roof-rail parts in automotive and aerospace industries. Bending of two aluminum profiles with different sections was carried out to investigate the effect of main process parameters on the bending process. Results show that the shape of the cross-section and its relative thickness and section modulus in bending are the main factors that determine the bending properties of the profiles. Roller stroke, properties of polyurethane pad and constraints on profiles are key factors that determine the bending radius and section deformation of bent profiles. Failures and quality problems met in experiments were also analyzed.展开更多
Aluminum alloy profile parts are widely used in the fields of aviation,equipmen t,automobile and ornamental industries. The construction method for “zero die trial” intelligent design system of aluminum extrusion di...Aluminum alloy profile parts are widely used in the fields of aviation,equipmen t,automobile and ornamental industries. The construction method for “zero die trial” intelligent design system of aluminum extrusion die was studied based on KBE idea. An object-oriented knowledge language AEKL(Aluminum Extrusion Knowl edge Language) was developed to construct intelligent knowledge model with three methods,frame,parameters and rules. On the aspect of knowledge reasoning,cas e-based reasoning was employed in addition to traditional rule-based reasoning method. API provided by CAD platform was used in geometry disposal. Finally,th e corresponding prototyping system was established and an design example was sho wn.展开更多
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro...The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conve...Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.展开更多
The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quench...The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.展开更多
声学黑洞(Acoustic Black Hole,ABH)技术作为一种新型高效的能量聚焦以及振动控制技术,在减振降噪方面具有很好应用潜力。铝型材板结构作为一种夹层结构,具有高比刚度和高比强度等优异轻量化特性,广泛应用于列车外地板、船舶、航空航天...声学黑洞(Acoustic Black Hole,ABH)技术作为一种新型高效的能量聚焦以及振动控制技术,在减振降噪方面具有很好应用潜力。铝型材板结构作为一种夹层结构,具有高比刚度和高比强度等优异轻量化特性,广泛应用于列车外地板、船舶、航空航天等领域中。为了探究ABH和铝型材板结构相结合后是否还具有典型的ABH效应,运用有限元数值模拟方法研究嵌入式ABH铝型材板结构的振动能量聚焦特性。对于频点和频带聚焦特性分析结果表明,在铝型材板结构中嵌入ABH特征结构可以起到显著振动能量聚焦效果。此外,根据聚焦特性分析结果,在ABH铝型材板结构中的ABH特定区域内敷设阻尼材料,并通过仿真计算验证了其减振特性。结果表明,由ABH铝型材板结构附加阻尼材料所得的组合结构振动水平显著低于普通铝型材板结构,部分频率下振动衰减高达52.6 dB。这为轨道交通领域提供了一种很有应用潜力的结构减振降噪新思路。展开更多
基金the National Natural Science Foundation of China(Nos.52005244,U20A20275)the Natural Science Foundation of Hunan Province,China(Nos.2021JJ30573,2023JJ60193)the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China(No.31715011)。
文摘3D elastic-plastic FE model for simulating the force controlled stretch-bending process of double-cavity aluminum profile was established using hybrid explicit−implicit solvent method.Considering the computational accuracy and efficiency,the optimal choices of numerical parameters and algorithms in FE modelling were determined.The formation mechanisms of cross-section distortion and springback were revealed.The effects of pre-stretching,post-stretching,friction,and the addition of internal fillers on forming quality were investigated.The results show that the stress state of profile in stretch-bending is uniaxial with only a circumferential stress.The stress distribution along the length direction of profile is non-uniform and the maximum tensile stress is located at a certain distance away from the center of profile.As aluminum profile is gradually attached to bending die,the distribution characteristic of cross-section distortion along the length direction of profile changes from V-shape to W-shape.After unloading the forming tools,cross-section distortion decreases obviously due to the stress relaxation,with a maximum distortion difference of 13%before and after unloading.As pre-stretching and post-stretching forces increase,cross-section distortion increases gradually,while springback first decreases and then remains unchanged.With increasing friction between bending die and profile,cross-section distortion slightly decreases,while springback increases.Cross-section distortion decreases by 83%with adding PVC fillers into the cavities of profile,while springback increases by 192.2%.
基金supported by the grant No.900100338 of the Universiti Malaysia Perlis (Uni MAP)the outstanding support provided by the staff in the School of Materials Engineering in Uni MAP+1 种基金the Centre for Low Carbon Transport and Institute for Vehicle System Engineering in Universiti Teknologi Malaysia (UTM)the School of Materials Engineering and Mineral Resources in Universiti Sains Malaysia (USM)
文摘The effect of small tool pin profiles on the microstructures and mechanical properties of 6061 aluminum alloy joints using friction stir welding (FSW) technique was investigated. Three different tool pin profiles: threaded tapered cylindrical (T1), triangular (T2) and square (T3) were used to produce the joints. The results indicate that the weld joints are notably affected by joining with different tool pin profiles. The triangular tool pin profile produces thebest metallurgicaland mechanical weld properties compared with other tool pin profiles. Besides, the lowest tensile strength and microhardness are obtained for the joint friction stir welded with square tool pin profile. It is observed that the smaller tool pin profile and shoulder diameter lead to narrow region of heat affected zone (HAZ) and a desired level of softening. The fracture surface examination shows that the joints are also affected when welding with different types of tool pin profiles. The fracture surface shows that the triangular specimen fails with a ductile fracture mode during the tensile test, while the brittle fracture modes are observed in the joints fabricated with other tool pin profiles (T1 and T3).
基金Project(50425517) supported by National Science Foundation for Distinguished Young Scholars of ChinaProject(50375087) supported by the Natural Science Foundation of ChinaProject(Q2004f01) supported by Natural Science Foundation of Shandong Province, China
文摘Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly designed die structure. Finite volume numerical simulation was used to analyze the extrusion process of a hollow profile with porthole die and the problem of non-uniform material flow was found. Optimization was made to the originally designed die to solve the problem. Lower load, reasonable seaming location and even extruded forepart with uniform material flow in the optimized die extrusion were obtained. Guidelines to porthole die design were given and it is also concluded that finite volume method with Eulerian description avoids mesh regeneration and is suitable to numerical simulation of severe deformation processes, such as profile extrusion.
文摘The high flexibility of profile bending with hyperelastic pad enables it to be a promising method for small lot or single part production, especially for space frame and roof-rail parts in automotive and aerospace industries. Bending of two aluminum profiles with different sections was carried out to investigate the effect of main process parameters on the bending process. Results show that the shape of the cross-section and its relative thickness and section modulus in bending are the main factors that determine the bending properties of the profiles. Roller stroke, properties of polyurethane pad and constraints on profiles are key factors that determine the bending radius and section deformation of bent profiles. Failures and quality problems met in experiments were also analyzed.
文摘Aluminum alloy profile parts are widely used in the fields of aviation,equipmen t,automobile and ornamental industries. The construction method for “zero die trial” intelligent design system of aluminum extrusion die was studied based on KBE idea. An object-oriented knowledge language AEKL(Aluminum Extrusion Knowl edge Language) was developed to construct intelligent knowledge model with three methods,frame,parameters and rules. On the aspect of knowledge reasoning,cas e-based reasoning was employed in addition to traditional rule-based reasoning method. API provided by CAD platform was used in geometry disposal. Finally,th e corresponding prototyping system was established and an design example was sho wn.
基金the financial supports from the National Natural Science Foundation of China(No.51975330)Science Fund for Distinguished Young Scholars of Shandong Province,China(No.JQ201810)the Key Research and Development Program of Shandong Province,China(No.2019JZZY010360).
文摘The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金supported by the National Natural Science Foundation of China(51705470).
文摘Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.
基金Project(zzyjkt2013-10B)supported by the Foundation of State Key Laboratory of High-performance&Complicated Manufacturing,ChinaProject(51275533)supported by the National Natural Science Foundation of China
文摘The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.
文摘声学黑洞(Acoustic Black Hole,ABH)技术作为一种新型高效的能量聚焦以及振动控制技术,在减振降噪方面具有很好应用潜力。铝型材板结构作为一种夹层结构,具有高比刚度和高比强度等优异轻量化特性,广泛应用于列车外地板、船舶、航空航天等领域中。为了探究ABH和铝型材板结构相结合后是否还具有典型的ABH效应,运用有限元数值模拟方法研究嵌入式ABH铝型材板结构的振动能量聚焦特性。对于频点和频带聚焦特性分析结果表明,在铝型材板结构中嵌入ABH特征结构可以起到显著振动能量聚焦效果。此外,根据聚焦特性分析结果,在ABH铝型材板结构中的ABH特定区域内敷设阻尼材料,并通过仿真计算验证了其减振特性。结果表明,由ABH铝型材板结构附加阻尼材料所得的组合结构振动水平显著低于普通铝型材板结构,部分频率下振动衰减高达52.6 dB。这为轨道交通领域提供了一种很有应用潜力的结构减振降噪新思路。