It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode...It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.展开更多
At present, the main problem faced by ground-based augment system (GBAS) is that though carder smoothing filter and local differential global positioning system (LDGPS) improve the accuracy of the pseudorange by r...At present, the main problem faced by ground-based augment system (GBAS) is that though carder smoothing filter and local differential global positioning system (LDGPS) improve the accuracy of the pseudorange by reducing the noise in it and eliminating almost all the common errors between the user and the reference station, they also cause extra errors on account of the effects of the ionosphere temporal and spatial gradients. Based on the analysis of these errors as well as the smoothing noise, this article suggests a new algorithm to design the optimal Hatch filter, whose smoothing window width varies real-time with the satellite elevation, ionosphere variation, and distance from the user to the reference station. By conducting the positioning process in the GBAS emulation platform for several hours and after its comparison with the performances of traditional Hatch filters, it is found that the errors in the differential correction become smaller and the positioning accuracy gets heightened with this new method.展开更多
针对单频地基增强系统(Ground Based Augmentation System,GBAS)中电离层异常时Hatch滤波器平滑精度降低问题,系统分析了电离层延时对Hatch滤波器平滑精度的影响,提出一种改进自适应Hatch滤波算法。根据卫星信号计算码载偏离度,并利用...针对单频地基增强系统(Ground Based Augmentation System,GBAS)中电离层异常时Hatch滤波器平滑精度降低问题,系统分析了电离层延时对Hatch滤波器平滑精度的影响,提出一种改进自适应Hatch滤波算法。根据卫星信号计算码载偏离度,并利用二阶线性时不变低通滤波器抑制码载偏离度高频信号,以实现电离层异常实时检测;建立平滑后伪距误差均方根与电离层延时变化率、伪距测量噪声标准差以及平滑时间三者之间的函数模型,并由此确定出Hatch滤波器最优平滑时间。利用GBAS原理样机进行验证实验,结果表明:自适应Hatch滤波算法能够根据卫星信号电离层延时变化率确定滤波器最优平滑时间,且当电离层异常时,自适应Hatch滤波器机载位置误差最大由1.15 m减小为0.43 m,从而验证了所提算法的有效性。展开更多
星间精密测距是导航星座实现自主导航的核心技术。针对导航星座中码测量值精度低但无整周模糊度,载波相位测量值精度高但存在整周模糊度的特点,该文根据贝叶斯递推原理提出了一种衰减记忆高斯和滤波(Fading Memory Gaussian Sum Filter,...星间精密测距是导航星座实现自主导航的核心技术。针对导航星座中码测量值精度低但无整周模糊度,载波相位测量值精度高但存在整周模糊度的特点,该文根据贝叶斯递推原理提出了一种衰减记忆高斯和滤波(Fading Memory Gaussian Sum Filter,FMGSF)的伪距估计方法。该方法用高斯和形式近似表示系统后验概率密度,并根据卡尔曼滤波原理来更新高斯项的均值和方差,同时引入衰减记忆因子克服由于模型失配导致的滤波结果发散问题,利用重采样解决由于载波相位测量值不确定导致的算法复杂度增加问题。理论分析和仿真结果表明,该文提出的方法不仅能够克服周跳对伪距估计的影响,而且可以获得更好的测距精度。展开更多
基金supported by the National Natural Science Foundationof China (60974104)the National Defense Technical Foundation of Shipbuilding Industry (08J3.8.8)
文摘It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.
基金National Natural Science Foundation of China (60672181)National High-tech Research and Development Program (2006AA12A101)
文摘At present, the main problem faced by ground-based augment system (GBAS) is that though carder smoothing filter and local differential global positioning system (LDGPS) improve the accuracy of the pseudorange by reducing the noise in it and eliminating almost all the common errors between the user and the reference station, they also cause extra errors on account of the effects of the ionosphere temporal and spatial gradients. Based on the analysis of these errors as well as the smoothing noise, this article suggests a new algorithm to design the optimal Hatch filter, whose smoothing window width varies real-time with the satellite elevation, ionosphere variation, and distance from the user to the reference station. By conducting the positioning process in the GBAS emulation platform for several hours and after its comparison with the performances of traditional Hatch filters, it is found that the errors in the differential correction become smaller and the positioning accuracy gets heightened with this new method.
文摘星间精密测距是导航星座实现自主导航的核心技术。针对导航星座中码测量值精度低但无整周模糊度,载波相位测量值精度高但存在整周模糊度的特点,该文根据贝叶斯递推原理提出了一种衰减记忆高斯和滤波(Fading Memory Gaussian Sum Filter,FMGSF)的伪距估计方法。该方法用高斯和形式近似表示系统后验概率密度,并根据卡尔曼滤波原理来更新高斯项的均值和方差,同时引入衰减记忆因子克服由于模型失配导致的滤波结果发散问题,利用重采样解决由于载波相位测量值不确定导致的算法复杂度增加问题。理论分析和仿真结果表明,该文提出的方法不仅能够克服周跳对伪距估计的影响,而且可以获得更好的测距精度。