期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
The role of hazard vulnerability assessments in disaster preparedness and prevention in China 被引量:3
1
作者 Yan Du Yi-bo Ding +1 位作者 Zi-xiong Li Guang-wen Cao 《Military Medical Research》 SCIE CAS 2015年第4期228-234,共7页
China is prone to disasters and escalating disaster losses. Effective disaster mitigation is the foundation for efficient disaster response and rescue and for reducing the degree of hazardous impacts on the population... China is prone to disasters and escalating disaster losses. Effective disaster mitigation is the foundation for efficient disaster response and rescue and for reducing the degree of hazardous impacts on the population. Vulnerability refers to the population's capacity to anticipate, cope with, and recover from the impact of a hazardous event. A hazard vulnerability assessment(HVA) systematically evaluates the damage that could be caused by a potential disaster, the severity of the impact, and the available medical resources during a disaster to reduce population vulnerability and increase the capacity to cope with disasters. In this article, we summarized HVA team membership, content(disaster identification, probability and consequences), and methods and procedures for an HVA that can be tailored to China's needs. We further discussed the role of epidemiology in an HVA. Disaster epidemiology studies the underlying causes of disasters to achieve effective disaster prevention and reduction. In addition, we made several recommendations that are already in practice in developed countries, such as the U.S., for future implementation in China and other developing countries. An effective HVA plan is crucial for successful disaster preparedness, response, and recovery. 展开更多
关键词 VULNERABILITY hazard vulnerability assessment Disaster epidemiology Disaster preparedness
下载PDF
Analysis of debris flow control effect and hazard assessment in Xinqiao Gully,Wenchuan M_(s)8.0 earthquake area based on numerical simulation 被引量:1
2
作者 Chang Yang Yong-bo Tie +3 位作者 Xian-zheng Zhang Yan-feng Zhang Zhi-jie Ning Zong-liang Li 《China Geology》 CAS CSCD 2024年第2期248-263,共16页
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff... Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events. 展开更多
关键词 Landslide Debris flow hazard assessment Numerical simulation OpenLISEM Prevention and control project Wenchuan M_(s)8.0 earthquake Xinqiao Gully Sichuan province Geological hazards survey engineering
下载PDF
Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province,China
3
作者 Tao Li Chen-chen Xie +3 位作者 Chong Xu Wen-wen Qi Yuan-dong Huang Lei Li 《China Geology》 CAS CSCD 2024年第2期315-329,共15页
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin... Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County. 展开更多
关键词 Landslide hazard Heavy rainfall Harzard mapping hazard assessment Automated machine learning Shallow landslide Visual interpretation Luhe County Geological hazards survey engineering
下载PDF
Application of Hazard Vulnerability Analysis Based on Kaiser Model in Neonatal Breast Milk Management
4
作者 Bingqing Zheng Wenqing Zhang Xiaoxia Huang 《Journal of Clinical and Nursing Research》 2024年第1期152-161,共10页
Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-fe... Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children. 展开更多
关键词 Breast milk management The Kaiser model hazard vulnerability analysis risk assessment
下载PDF
A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining 被引量:16
5
作者 Piotr Malkowski Zbigniew Niedbalski 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期345-355,共11页
Rockburst hazard in mining industry all over the world is one of the most severe hazards. It is becoming increasingly common because of the ever-growing depths of mining operations accompanied by the increasing streng... Rockburst hazard in mining industry all over the world is one of the most severe hazards. It is becoming increasingly common because of the ever-growing depths of mining operations accompanied by the increasing strength of rocks. One of the most difficult issues is to predict this hazard before the mining operations, whether geophysical investigations have been conducted or not. Polish experience in this field shows that in such cases an effective solution can be the geomechanical method. Therefore, extensive studies on rockburst hazard should focus on three main aspects:(1) rock mass and rock(and coal)predisposition to rockburst–laboratory tests and empirical analyses based on lithology,(2) identification of the potential places with stress and elastic energy concentration in the rock mass within the area planned for exploitation, and(3) the assessment of the impact of mining tremors on the surface. This preliminary geomechanical analysis assesses the propensity of the rock mass to dynamic breakage and provides quantitatively the level of rockburst hazard. The paper presents Polish experience in rockburst hazard assessment with the use of geomechanical method, as well as some solutions and examples of such analyses. 展开更多
关键词 hazards in underground mining Rockburst hazard assessment Rock mass propensity to rockburst Rock propensity to rockburst Geomechanical analysis
下载PDF
Debris Flow Hazard Assessment Based on Support Vector Machine 被引量:9
6
作者 YUAN Lifeng 1, 2 , ZHANG Youshui 3 1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China 3. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期897-900,共4页
Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length rat... Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results. 展开更多
关键词 debris flow hazard assessment support vector machine (SVM)
下载PDF
A Hazard Assessment Method for Potential Earthquake-Induced Landslides – A Case Study in Huaxian County, Shaanxi Province 被引量:8
7
作者 LIU Jiamei GAO Mengtan +2 位作者 WU Shuren WANG Tao WU Jian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期590-603,共14页
The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides i... The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquakeinduced landslides and land planning. 展开更多
关键词 earthquake-induced landslide hazard assessment Newmark displacement model Monte Carlo
下载PDF
Hazards Assessment of Regional Debris Flows Based on Geographic Information Science 被引量:7
8
作者 JIANG Xiaobo CUI Peng 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期651-656,共6页
Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided ... Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework. 展开更多
关键词 debris flow hazards assessment geographic information science the Upper Yangtze River Watershed
下载PDF
Characteristics and hazards of different snow avalanche types in a continental snow climate region in the Central Tianshan Mountains 被引量:6
9
作者 HAO Jiansheng Richard MIND'JE +3 位作者 LIU Yang HUANG Farong ZHOU Hao LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2021年第4期317-331,共15页
Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ab... Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies. 展开更多
关键词 continental snow climate avalanche hazard full-depth snow avalanche surface-layer snow avalanche hazard assessment disaster management
下载PDF
Dynamic assessment of rainfall-induced shallow landslide hazard 被引量:4
10
作者 TANG Yang YIN Kun-long +2 位作者 LIU Lei ZHANG Ling FU Xiao-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第7期1292-1302,共11页
The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilis... The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilistic analysis method that combines TRIGRS and the point-estimate method for evaluating the hazards of shallow landslides have been proposed under the condition of rainfall over a large area. TRIGRS provides the transient infiltration model to analyze the pore water pressure during a rainfall. The point-estimate method is used to analyze the uncertainty of the soil parameters, which is performed in the geographic information system(GIS). In this paper, we use this method to evaluate the hazards of shallow landslides in Badong County,Three Gorges Reservoir, under two different types of rainfall intensity, and the results are compared with the field investigation. The results showed that the distribution of the hazard map is consistent with the observed landslides. To some extent, the distributionof the hazard map reflects the spatial and temporal distribution of the shallow landslide caused by rainfall. 展开更多
关键词 Shallow landslide TRIGRS Point-estimate method RAINFALL hazard assessment
下载PDF
Probabilistic seismic landslide hazard assessment: a case study in Tianshui, Northwest China 被引量:4
11
作者 WANG Tao LIU Jia-mei +2 位作者 SHI Ju-song GAO Meng-tan WU Shu-ren 《Journal of Mountain Science》 SCIE CSCD 2020年第1期173-190,共18页
Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situati... Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark’s displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones. 展开更多
关键词 Probabilistic analysis Seismic hazard Newmark’s method LANDSLIDES Displacement model hazard assessment
下载PDF
Potential seismic landslide hazard and engineering effect in the Ya’an-Linzhi section of the Sichuan-Tibet transportation corridor, China 被引量:4
12
作者 Zhi-hua Yang Chang-bao Guo +3 位作者 Rui-an Wu Wei-wei Shao Peng-fei Yu Cai-hong Li 《China Geology》 CAS CSCD 2023年第2期228-240,共13页
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the plannin... The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the planning and construction of major projects.For the long-term prevention and early control of regional seismic landslides,based on analyzing seismic landslide characteristics,the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%.The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons,and are significantly affected by the active tectonics.The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins,broad river valleys,and plateau planation planes.The major east-west linear projects mainly pass through five areas with high seismic landslide hazard:Luding-Kangding section,Yajiang-Xinlong(Yalong river)section,Batang-Baiyu(Jinsha river)section,Basu(Nujiang river)section,and Bomi-Linzhi(eastern Himalaya syntaxis)section.The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows.The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard. 展开更多
关键词 Qinghai-Tibet Plateau Sichuan-Tibet transportation corridor Seismic landslide hazard assessment Engineering effect
下载PDF
Impacts of future climate change(2030-2059)on debris flow hazard:A case study in the Upper Minjiang River basin,China 被引量:4
13
作者 LI Ming TIAN Cong-shan +3 位作者 WANG Yu-kuan LIU Qin LU Ya-feng WANG Shan 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1836-1850,共15页
An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts ... An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil,vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation(2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters. 展开更多
关键词 Debris flow hazard assessment Relative degree analysis Rough set theory Future climate change Minjiang River basin
下载PDF
State of art of seismic design and seismic hazard analysis for oil and gas pipeline system 被引量:4
14
作者 Aiwen Liu Kun Chen Jian Wu 《Earthquake Science》 CSCD 2010年第3期259-263,共5页
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can... The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper. 展开更多
关键词 seismic hazard assessment oil and gas pipeline fault displacement
下载PDF
Seismic hazard assessment of the Three Gorges Project 被引量:4
15
作者 Yao Yunsheng Wang Qiuliang +2 位作者 Li Jinggang Shen Xueling Kong Yuyang 《Geodesy and Geodynamics》 2013年第2期53-60,共8页
Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismieity before impoundment and that the epicenters were c... Seismic monitoring data for the past 50 years in the Three Gorges Reservoir area show that the reservoir head area is a typical weak seismic region with low seismieity before impoundment and that the epicenters were concentrated in the east and west sides of the Zigui Basin, most of which were natural tectonic earth- quakes. After impoundment, the seismic activity shifted to the segment between Badong and Zigui along the Yangtze River, mainly within 5 km of the reservoir bank. The seismogenesis was categorized into four types: Karst collapse earthquakes, earthquakes caused by Karst gas explosion, mining tunnel collapse earthquakes, and rock (terrane) slip earthquakes, all of which are related to the lithology, structure, and tectonics of near- surface geological bodies of the area. Compared with the seismicity before impoundment, the seismic frequency increase was remarkable, with most of the magnitudes below Ms2.0. Therefore, the intensity of the earth- quakes remained at a low level. On November 22, 2008, a magnitude 4.1 earthquake, the largest earthquake recorded since impoundment, occurred in Quyuan Town, Zigui County. The intensity and PGA of reservoir-in- duced earthquakes are higher than those of tectonic earthquakes with equal magnitude, but the peak intensity of reservoir-induced earthquakes is not likely to go beyond that of the estimated range from earlier studies. 展开更多
关键词 Three Gorges Project RESERVOIR induced earthquake seismic hazard assessment
下载PDF
Reservoir-landslide Hazard Assessment Based on GIS: A Case Study in Wanzhou Section of the Three Gorges Reservoir 被引量:5
16
作者 WANG Meng QIAO Jian-ping 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1085-1096,共12页
Reservoir-landslide is mainly caused by changes in hydrodynamic conditions of slope interior at the time of water storage or discharge. The current study mainly focuses on the typical reservoirlandslide, but the sudde... Reservoir-landslide is mainly caused by changes in hydrodynamic conditions of slope interior at the time of water storage or discharge. The current study mainly focuses on the typical reservoirlandslide, but the sudden occurrence of some unknown landslides brought a lot of difficulties for hazards prevention. Therefore, we proposed a method to evaluate the regional scale reservoir-landslide hazard. We took Wanzhou section of Three Gorges Reservoir(China) as the study area and systemically and synthetically carried out the reservoir-landslide hazard evaluation under the condition of water level regulation. Firstly, we made reservoir-landslide susceptibility assessment by using the methods of spatial analysis and statistics based on geological and geomorphological materials and field survey data, and then, analyzed the regional-scale slope stability based on the infinite slope model used to analyze the bank slope stability change under the condition of water fluctuation, finally, developed a reservoir-landslide hazard evaluation model based on the results of susceptibility and stability. The hazard evaluation model was used to predict and evaluate the hazard change under the role of water level regulation. The results showed that the landslide hazard of the whole region decreased during water storage, landslide hazards increased during water discharge. The faster the regulation speed, the greater the slope hazard. The results can provide the basis for hazard management and regional land-use planning. 展开更多
关键词 Reservoir-landslide hazards assessment
下载PDF
Landslide hazards mapping using uncertain Na?ve Bayesian classification method 被引量:3
17
作者 毛伊敏 张茂省 +1 位作者 王根龙 孙萍萍 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3512-3520,共9页
Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification techniq... Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naive Bayesian classification method in Baota district of Yan'an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naive Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves(AUC) in NBU and Naive Bayesian algorithm are 87.29% and 82.47% respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique. 展开更多
关键词 uncertain Bayesian model LANDSLIDE hazard assessment
下载PDF
Probabilistic seismic hazard analysis in Nepal 被引量:2
18
作者 Thapa Dilli Ram Wang Guoxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期577-586,共10页
The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitud... The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitude 79° E and 90° E) from 1255 to 2011. The distribution of catalogued earthquakes, together with available geological and tectonic information were used to delineate twenty-three seismic source seismic source information and probabilistic earthquake hazard prediction relationship, peak ground accelerations (PGAs) have zones in Nepal and the surrounding region. By using the parameters in conjunction with a selected ground motion been calculated at bedrock level with 63%, 10%, and 2% probability of exceedance in 50 years. The estimated PGA values are in the range of 0.07-0.16 g, 0.21 0.62 g, and 0.38-1.1 g for 63%, 10%, and 2% probability of exceedance in 50 years, respectively. The resulting ground motion maps show different characteristics of PGA distribution, i.e., high hazard in the far-western and eastern sections, and low hazard in southern Nepal. The quantified PGA values at bedrock level provide information for microzonation studies in different parts of the country. 展开更多
关键词 seismic hazard assessment peak ground acceleration EARTHQUAKE Nepal Himalaya
下载PDF
Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations 被引量:3
19
作者 N.V.Silacheva U.K.Kulbayeva N.A.Kravchenko 《Geodesy and Geodynamics》 2018年第2期131-141,共11页
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment... As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article. 展开更多
关键词 Probabilistic seismic hazard assessment Seismic zoning map Peak ground acceleration Seismic sources Seismotectonic setting Seismic regime Ground motion prediction equations
下载PDF
Seismic Hazard Assessment of District Mansehra,Khyber Pakhtoonkhawa,Pakistan 被引量:1
20
作者 MONA Lisa 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1157-1168,共12页
The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carri... The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carried out by considering the earthquake source zones, selection of appropriate attenuation equations, near fault effects and maximum potential magnitude estimation. The Mansehra Thrust, Oghi Fault, Banna Thrust, Balakot Shear Zone, Main Boundary Thrust, Panjal Thrust, Jhelum Fault and Muzaffarabad Fault and, further to the south, the Sanghargali, Nathiagali, and Thandiani Thrusts are the most critical tectonic features within the 50 km radius of Mansehra. Using the available instrumental seismological data from 1904 to 2007, SHA has been carried out. Other reactivated critical tectonic features in the area have been investigated. Among them the Balakot-Bagh fault, with the fault length of 120 km from Balakot to Poonch, has been considered as the most critical tectonic feature on the basis of geological/structural/seismological data. The potential earthquake of maximum magnitude 7.8 has been assigned to the Balakot-Bagh fault using four regression relations. The peak ground acceleration value of 0.25 g (10% probability of exceedance for 50 years) and 0.5 g has been calculated with the help of the attenuation equation using probabilistic and deterministic approaches. 展开更多
关键词 Seismic hazard Assessment Mansehra District NW Himalayas Pakistan Probabilistic and Deterministic Approaches Balakot-Bagh Fault
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部