Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea con...Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea consist ing of crescent dunes, barchan chains, compound transverse dune ridges and co mplex megadunes. To solve some technical problems in the protection of the highway from sand drift encroachment, desert experts have been conductin g the theoretical and applied studies on sand movement laws; causes, severities and time-space differentiation of sand drift damages; and control ways in cluding mechanical, chemical and biological measures. In this paper the authors give an overall summary on the research contents and recent progress i n the control of sand drift damages in China and hold that the theoretica l research results and practices in the prevention of sand drift encr oachment on the cross-desert highway represent a breakthrough and has an epoch-making significance. Since the construction of protective forest along the cross-desert highway requires large amount of ground water, what will be its environmental consequence and whether it can effectiv ely halt sand drift encroachment on the highway forever are the questions to be studied urgently.展开更多
Sand dune movement is a hazardous phenomenon in Egypt and creates major threat on the existing land use and land cover as well as developmental plans. This paper studied the sand dune morphology and quantified the rat...Sand dune movement is a hazardous phenomenon in Egypt and creates major threat on the existing land use and land cover as well as developmental plans. This paper studied the sand dune morphology and quantified the rate of sand dune movements and direction in a newly developed project in the southwest of Egypt. Two dates of satellite imageries were used to trace the Barchan dunes at various sites with different morphological properties to estimate the annual movement rate based on point to point geo-correlations. 149 dunes of the common sand dunes in the area of study including barchans and transverse dunes were studied to accurately determine their rate of movements, which ranged from 1.3 to 19.3 my-1. The direction of sand dune movements was mainly to the south and slightly southeast with range from 265 to 295 degrees. The quantification of sand dune movement and direction has, indeed, enabled to determine the major threat on the exiting land use and land cover as well as the newly developmental projects.展开更多
Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured...Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured in marine sand deposits from Liaodong Bay (LDB), North Yellow Sea (NYS), Zhoushan area (ZS), Taiwan Shoal (TS) and Pearl River Mouth (PR), offshore China, which are potential marine sand mining areas. The radiation activity equivalent (Raeq), indoor gamma absorbed dose rate (DR), annual effective dose (HR), alpha index (Ia), gamma index (Ig), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the marine sands offshore China. From the analysis, it is found that these marine sands are safe for the constructions. The Pearson correlation coefficient reveals that the 226Ra distribution in the marine sands offshore China is controlled by the variation of the 40K concentration. Principal component analysis (PCA) yields a two-component representation of the entire data from the marine sands, wherein 98.22% of the total variance is explained. Our results provide good baseline data to expand the database of radioactivity of building materials in China and all over the world.展开更多
Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estima...Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estimate the dose rates and radiation hazard indices. The average specific activities are 778.20 Bq/kg for 238 U; 646.89 Bq/kg for 226 Ra; 621.92 and 627.85 Bq/kg for the 222 Rn daughters 214 Pb and 214 Bi respectively. The average specific activity of 232 Th is 1510.25 Bq/kg, while the calculated specific activity for 40 K has an average of 8.41 Bq/kg. The average specific activity of 235 U is 38.61 Bq/kg. The average absorbed dose rate is 1211.36 nGy/h, 20 times higher than the estimated average global primordial radiation of 60 nGy/h and 6 times higher than that of the world range (10-200 nGy/h). The radium equivalent (Ra eq ) values are from 6 to 9 times the recommended value. The internal and external hazard indices (H int , H ex ) indicate that their values are from 6 to 11 times the permissible values of these indices. These higher values may be due to the presence of economic heavy minerals containing radionuclides as zircon and monazite as well as some trace minerals, thorite and uranothorite. The mineralogical study indicates the beach sands contain heavy minerals, zircon, monazite, rutile, ilmenite, leucoxene, magnetite and garnet. The average abundance of zircon is 0.175 wt% ranging from 0.125 wt% to 0.239 wt%, while it is 0.004wt% ranging from 0.001 wt% to 0.007 wt% for monazite. The average abundance is 0.087 wt% for rutile; 2.029 wt% for ilmenite; 1.084 wt% for magnetite; 0.384 wt% for leucoxene and 0.295 wt% for garnet.展开更多
The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromis...The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromises the safe operation of the HSR.This paper studies the mechanisms leading to wind-blown sand hazards and the outcomes of sand control projects in these areas.The main findings are as follows:(1)Cold northern airflows over the Tian Shan mountain range are accelerated by the wind tunnels and downslope effect as they pass over complex terrain comprising passes,gullies,and proluvial fans.Consequently,the wind intensity often increases two-to threefold,creating frequent high-speed winds that lead to severe sand damage along the HSR.(2)In the Gobi areas with extremely strong winds,sand grains can be lifted as high as 9 m from the ground into the air,far higher than in other areas of the desert.The sand transport rate decreases exponentially with increasing height.Both wind speed and particle size determine saltation height.Coarser particles and stronger winds provide the particles with a higher kinetic energy as they collide with the ground.In the wind zones of Baili and Yandun,the analysed study areas,the saltation layer height of wind-blown sand/gravel exceeds 3 and 2 m,respectively.(3)Based on the above findings,recently emerging sand control materials,suitable for the areas of interest,were screened and developed.Furthermore,under the proposed principle of‘supplementing blocking with trapping’,a comprehensive sand control measure was established,featuring sandblocking belts comprised of multiple rows,and high,vertical sand-trapping installations with a large grids size.The installed system showed a high efficacy,reducing sand transport rate by 87.87%and significantly decreasing the deposition of sand along a trial section of the HSR.展开更多
基金The National Key Project for Basic Research, No.G2000048705 Knowledge Innovation Project of the Cold and Arid Regions Environmental and Engineering Research Institute, CAS, No.CACX210093
文摘Re puted as a wonderful achievement of the world's highway construction h istory, the Taklimakan Desert highway is now facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea consist ing of crescent dunes, barchan chains, compound transverse dune ridges and co mplex megadunes. To solve some technical problems in the protection of the highway from sand drift encroachment, desert experts have been conductin g the theoretical and applied studies on sand movement laws; causes, severities and time-space differentiation of sand drift damages; and control ways in cluding mechanical, chemical and biological measures. In this paper the authors give an overall summary on the research contents and recent progress i n the control of sand drift damages in China and hold that the theoretica l research results and practices in the prevention of sand drift encr oachment on the cross-desert highway represent a breakthrough and has an epoch-making significance. Since the construction of protective forest along the cross-desert highway requires large amount of ground water, what will be its environmental consequence and whether it can effectiv ely halt sand drift encroachment on the highway forever are the questions to be studied urgently.
文摘Sand dune movement is a hazardous phenomenon in Egypt and creates major threat on the existing land use and land cover as well as developmental plans. This paper studied the sand dune morphology and quantified the rate of sand dune movements and direction in a newly developed project in the southwest of Egypt. Two dates of satellite imageries were used to trace the Barchan dunes at various sites with different morphological properties to estimate the annual movement rate based on point to point geo-correlations. 149 dunes of the common sand dunes in the area of study including barchans and transverse dunes were studied to accurately determine their rate of movements, which ranged from 1.3 to 19.3 my-1. The direction of sand dune movements was mainly to the south and slightly southeast with range from 265 to 295 degrees. The quantification of sand dune movement and direction has, indeed, enabled to determine the major threat on the exiting land use and land cover as well as the newly developmental projects.
文摘Natural radioactivity is very important for the assessment of the marine sand property and usability. By using gamma spectrometry, the concentration of the natural radionuclides 226Ra, 232Th and 40K have been measured in marine sand deposits from Liaodong Bay (LDB), North Yellow Sea (NYS), Zhoushan area (ZS), Taiwan Shoal (TS) and Pearl River Mouth (PR), offshore China, which are potential marine sand mining areas. The radiation activity equivalent (Raeq), indoor gamma absorbed dose rate (DR), annual effective dose (HR), alpha index (Ia), gamma index (Ig), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the marine sands offshore China. From the analysis, it is found that these marine sands are safe for the constructions. The Pearson correlation coefficient reveals that the 226Ra distribution in the marine sands offshore China is controlled by the variation of the 40K concentration. Principal component analysis (PCA) yields a two-component representation of the entire data from the marine sands, wherein 98.22% of the total variance is explained. Our results provide good baseline data to expand the database of radioactivity of building materials in China and all over the world.
文摘Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estimate the dose rates and radiation hazard indices. The average specific activities are 778.20 Bq/kg for 238 U; 646.89 Bq/kg for 226 Ra; 621.92 and 627.85 Bq/kg for the 222 Rn daughters 214 Pb and 214 Bi respectively. The average specific activity of 232 Th is 1510.25 Bq/kg, while the calculated specific activity for 40 K has an average of 8.41 Bq/kg. The average specific activity of 235 U is 38.61 Bq/kg. The average absorbed dose rate is 1211.36 nGy/h, 20 times higher than the estimated average global primordial radiation of 60 nGy/h and 6 times higher than that of the world range (10-200 nGy/h). The radium equivalent (Ra eq ) values are from 6 to 9 times the recommended value. The internal and external hazard indices (H int , H ex ) indicate that their values are from 6 to 11 times the permissible values of these indices. These higher values may be due to the presence of economic heavy minerals containing radionuclides as zircon and monazite as well as some trace minerals, thorite and uranothorite. The mineralogical study indicates the beach sands contain heavy minerals, zircon, monazite, rutile, ilmenite, leucoxene, magnetite and garnet. The average abundance of zircon is 0.175 wt% ranging from 0.125 wt% to 0.239 wt%, while it is 0.004wt% ranging from 0.001 wt% to 0.007 wt% for monazite. The average abundance is 0.087 wt% for rutile; 2.029 wt% for ilmenite; 1.084 wt% for magnetite; 0.384 wt% for leucoxene and 0.295 wt% for garnet.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41730644,41901011&41771010)。
文摘The Lanzhou-Xinjiang high-speed railway(HSR)traverses areas of the Gobi Desert where extremely strong winds are frequent.These strong winds cause sand/gravel hazards,an unaddressed issue that often seriously compromises the safe operation of the HSR.This paper studies the mechanisms leading to wind-blown sand hazards and the outcomes of sand control projects in these areas.The main findings are as follows:(1)Cold northern airflows over the Tian Shan mountain range are accelerated by the wind tunnels and downslope effect as they pass over complex terrain comprising passes,gullies,and proluvial fans.Consequently,the wind intensity often increases two-to threefold,creating frequent high-speed winds that lead to severe sand damage along the HSR.(2)In the Gobi areas with extremely strong winds,sand grains can be lifted as high as 9 m from the ground into the air,far higher than in other areas of the desert.The sand transport rate decreases exponentially with increasing height.Both wind speed and particle size determine saltation height.Coarser particles and stronger winds provide the particles with a higher kinetic energy as they collide with the ground.In the wind zones of Baili and Yandun,the analysed study areas,the saltation layer height of wind-blown sand/gravel exceeds 3 and 2 m,respectively.(3)Based on the above findings,recently emerging sand control materials,suitable for the areas of interest,were screened and developed.Furthermore,under the proposed principle of‘supplementing blocking with trapping’,a comprehensive sand control measure was established,featuring sandblocking belts comprised of multiple rows,and high,vertical sand-trapping installations with a large grids size.The installed system showed a high efficacy,reducing sand transport rate by 87.87%and significantly decreasing the deposition of sand along a trial section of the HSR.