ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for i...ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for intermediate and small earthquakes occurred in Chinese mainland and Southern California have been calculated by use of these equations. The results demonstrate that the level and distribution of τ0 are closely related to the location where large earthquakes will occur, i.e. the region with higher level of τ0 will be prone to occur large earthquakes and the region with lower level will usually occur small earthquakes. According to the spatial distribution of τ0 , the seismic hazard regions or the potential earthquake source regions can in some degree be determined. According to the variation of τ0 with time, the large earthquake occurrence time can be roughly estimated. According to the distribution of τ0 in Southern California and variation with time, three high stress level regions are determined, one (Goldfield area) of them is the present seismic hazard region.展开更多
Social vulnerability in this study represents the differences between the capacity to cope with natural hazards and disaster losses suffered within and between places.The assessment of social vulnerability has been re...Social vulnerability in this study represents the differences between the capacity to cope with natural hazards and disaster losses suffered within and between places.The assessment of social vulnerability has been recognized as a critical step in understanding natural hazard risks and enhancing effective response capabilities.This article presents an initial study of the social vulnerability of the Beijing-Tianjin-Hebei(B-T-H) Region in China.The goal is to replicate and test the applicability of the United States Social Vulnerability Index(So VI) method in a Chinese cultural context.Thirty-nine variables adapted from the So VI were collected in relation to two aspects:socioeconomic vulnerability and built environment vulnerability.Using factor analysis,seven factors were extracted from the variable set:the structure of social development,the level of economic and government financial strength,social justice and poverty,family structure,the intensity of space development,the status of residential housing and transportation,and building structure.Factor scores were summed to get the final So VI scores and the most and least vulnerable units were identified and mapped.The highest social vulnerability is concentrated in the northwest of the study area.The least socially vulnerable areas are mainly distributed in the Beijing,Tianjin and Shijiazhuang core urban peripheral and central city areas of the prefecture-level cities.The results show that this method is a useful tool for revealing places that have a high level of vulnerability,in other words,areas which are more likely to face significant challenges in coping with a large-scale event.These findings could provide a scientific basis for policy making and the implementation of disaster prevention and mitigation in China.展开更多
There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate s...There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.展开更多
The primary goal of the demonstration project endorsed by the Scientific and Technical Committee for IDNDR in 1992 is to ensure that national agencies are able to assess seismic hazard in a regionally coordinated fash...The primary goal of the demonstration project endorsed by the Scientific and Technical Committee for IDNDR in 1992 is to ensure that national agencies are able to assess seismic hazard in a regionally coordinated fashion by using advanced methods.China,as a Regional Center of Central Southern Asia,has contacted with countries of the region to realistically practice seismic hazard assessments of Continental Asia.A test area located in the collision boundary between the Indian and Eurasian plates was chosen to examine the seismic hazard assessment approach in the regional coordinates.The seismotectonics and three versions of seismic sources of the test area are described in this paper and under the Global Seismic Hazard Assessment Program(GSHAP),guidelines an earthquake catalogue of the test area was assembled.Because of the incompleteness of earthquake data in different countries,we adopt different time windows for different magnitude intervals in order to obtain the seismicity parameters of sources.By展开更多
Hindukush is an active subduction zone where at least one earthquake occurs on daily basis.For seismic hazard studies,it is important to develop a local magnitude scale using the data of local seismic network.We have ...Hindukush is an active subduction zone where at least one earthquake occurs on daily basis.For seismic hazard studies,it is important to develop a local magnitude scale using the data of local seismic network.We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies(CES)for a period of three years,i.e.2015–2017.A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater,was used with hypocentral distance less than 600 km.Magnitude scale developed by using this data comes to be M_(L)=logA+0.929logr+0.00298r-1.84.The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab.It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions,hence,seismically more active as well.We have calculated station correction factors for our network.Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure.Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared,it showed that a variance reduction of 44.1%was achieved.Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km.Newly developed magnitude scale will help in homogenization of earthquake catalog.It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale.展开更多
he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake...he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake. The uncertainties include deviations from the self-similarity of frequency-magnitude relations, different fitting methods, different methods obtained the annual occurrence rate, magnitude step used in fitting, start magnitude, error of magnitude and so on. Taking Xianshuihe River source zone as an example, we analyze uncertainties of occurrence rate of earthquakes M4, which is needed in risk evaluation extrapolating from frequency-magnitude relations of stronger earthquakes. The annual occurrence rate of M4 is usually required for seismic hazard assessment.The sensitivity analysis and examinations indicate that, in the same frequencymagnitude relations fitting method, the most sensitive factor is annual occurrence rate, the second is magnitude step and the following is start magnitude. Effect of magnitude error is rather small.Procedure of estimating the uncertainties is as follows:①Establishing a logical tree described uncertainties in frequencymagnitude relations by available data and knowledge about studied region.② Calculating frequencymagnitude relations for each end branches. ③ Examining sensitivities of each uncertainty factors, amending structure of logical tree and adjusting original weights. ④ Recalculating frequencymagnitude relations of end branches and complementary cumulative distribution function (CCDF) in each magnitude intervals.⑤ Obtaining an annual occurrence rate of M4 earthquakes under given fractiles.Taking fractiles as 20% and 80%, annual occurrence rate of M 4 events in Xianshuihe seismic zone is 0.643 0. The annual occurrence rate is 0.631 8 under fractiles of 50%, which is very close to that under fractiles 20% and 80%.展开更多
文摘ccording to the fracture mechanics rupture model of earthquakes put forward by us, several equations to compute tectonic ambient shear stress value τ0 have been derived [equations (1), (2), (3), (5)].τ0 values for intermediate and small earthquakes occurred in Chinese mainland and Southern California have been calculated by use of these equations. The results demonstrate that the level and distribution of τ0 are closely related to the location where large earthquakes will occur, i.e. the region with higher level of τ0 will be prone to occur large earthquakes and the region with lower level will usually occur small earthquakes. According to the spatial distribution of τ0 , the seismic hazard regions or the potential earthquake source regions can in some degree be determined. According to the variation of τ0 with time, the large earthquake occurrence time can be roughly estimated. According to the distribution of τ0 in Southern California and variation with time, three high stress level regions are determined, one (Goldfield area) of them is the present seismic hazard region.
基金Under the auspices of National Natural Science Foundation of China(No.41401176,41201550,41201114)New Starting Point of Beijing Union University(No.ZK10201406,ZK10201302)+1 种基金Humanities and Social Science Key Research Base of Zhejiang Province(Applied Economics at Zhejiang Gongshang University)(No.JYTyyjj20130105)Incubation Programme of Great Wall Scholars of Beijing Municipal University&College(No.IDHT20130322)
文摘Social vulnerability in this study represents the differences between the capacity to cope with natural hazards and disaster losses suffered within and between places.The assessment of social vulnerability has been recognized as a critical step in understanding natural hazard risks and enhancing effective response capabilities.This article presents an initial study of the social vulnerability of the Beijing-Tianjin-Hebei(B-T-H) Region in China.The goal is to replicate and test the applicability of the United States Social Vulnerability Index(So VI) method in a Chinese cultural context.Thirty-nine variables adapted from the So VI were collected in relation to two aspects:socioeconomic vulnerability and built environment vulnerability.Using factor analysis,seven factors were extracted from the variable set:the structure of social development,the level of economic and government financial strength,social justice and poverty,family structure,the intensity of space development,the status of residential housing and transportation,and building structure.Factor scores were summed to get the final So VI scores and the most and least vulnerable units were identified and mapped.The highest social vulnerability is concentrated in the northwest of the study area.The least socially vulnerable areas are mainly distributed in the Beijing,Tianjin and Shijiazhuang core urban peripheral and central city areas of the prefecture-level cities.The results show that this method is a useful tool for revealing places that have a high level of vulnerability,in other words,areas which are more likely to face significant challenges in coping with a large-scale event.These findings could provide a scientific basis for policy making and the implementation of disaster prevention and mitigation in China.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2002AA130020)
文摘There are many factors influencing landslide occurrence.The key for landslide control is to confirm the regional landslide hazard factors.The Cameron Highlands of Malaysia was selected as the study area.By bivariate statistical analysis method with GIS software the authors analyzed the relationships among landslides and environmental factors such as lithology,geomorphy,elevation,road and land use.Distance Evaluation Model was developed with Landslide Density(LD).And the assessment of landslide hazard of Cameron Highlands was performed.The result shows that the model has higher prediction precision.
文摘The primary goal of the demonstration project endorsed by the Scientific and Technical Committee for IDNDR in 1992 is to ensure that national agencies are able to assess seismic hazard in a regionally coordinated fashion by using advanced methods.China,as a Regional Center of Central Southern Asia,has contacted with countries of the region to realistically practice seismic hazard assessments of Continental Asia.A test area located in the collision boundary between the Indian and Eurasian plates was chosen to examine the seismic hazard assessment approach in the regional coordinates.The seismotectonics and three versions of seismic sources of the test area are described in this paper and under the Global Seismic Hazard Assessment Program(GSHAP),guidelines an earthquake catalogue of the test area was assembled.Because of the incompleteness of earthquake data in different countries,we adopt different time windows for different magnitude intervals in order to obtain the seismicity parameters of sources.By
文摘Hindukush is an active subduction zone where at least one earthquake occurs on daily basis.For seismic hazard studies,it is important to develop a local magnitude scale using the data of local seismic network.We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies(CES)for a period of three years,i.e.2015–2017.A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater,was used with hypocentral distance less than 600 km.Magnitude scale developed by using this data comes to be M_(L)=logA+0.929logr+0.00298r-1.84.The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab.It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions,hence,seismically more active as well.We have calculated station correction factors for our network.Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure.Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared,it showed that a variance reduction of 44.1%was achieved.Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km.Newly developed magnitude scale will help in homogenization of earthquake catalog.It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale.
文摘he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake. The uncertainties include deviations from the self-similarity of frequency-magnitude relations, different fitting methods, different methods obtained the annual occurrence rate, magnitude step used in fitting, start magnitude, error of magnitude and so on. Taking Xianshuihe River source zone as an example, we analyze uncertainties of occurrence rate of earthquakes M4, which is needed in risk evaluation extrapolating from frequency-magnitude relations of stronger earthquakes. The annual occurrence rate of M4 is usually required for seismic hazard assessment.The sensitivity analysis and examinations indicate that, in the same frequencymagnitude relations fitting method, the most sensitive factor is annual occurrence rate, the second is magnitude step and the following is start magnitude. Effect of magnitude error is rather small.Procedure of estimating the uncertainties is as follows:①Establishing a logical tree described uncertainties in frequencymagnitude relations by available data and knowledge about studied region.② Calculating frequencymagnitude relations for each end branches. ③ Examining sensitivities of each uncertainty factors, amending structure of logical tree and adjusting original weights. ④ Recalculating frequencymagnitude relations of end branches and complementary cumulative distribution function (CCDF) in each magnitude intervals.⑤ Obtaining an annual occurrence rate of M4 earthquakes under given fractiles.Taking fractiles as 20% and 80%, annual occurrence rate of M 4 events in Xianshuihe seismic zone is 0.643 0. The annual occurrence rate is 0.631 8 under fractiles of 50%, which is very close to that under fractiles 20% and 80%.