期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing:A case study in October,2014 被引量:19
1
作者 Lang Liu Yanli Wang +7 位作者 Shiyong Du Wenjie Zhang Lujian Hou Sverre Vedal Bin Han Wen Yang Mindong Chen Zhipeng Bai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第2期145-153,共9页
To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer(SPAMS) was deployed to measure the changes of single particle spe... To investigate the composition and possible sources of particles, especially during heavy haze pollution, a single particle aerosol mass spectrometer(SPAMS) was deployed to measure the changes of single particle species and sizes during October of 2014, in Beijing. A total of 2,871,431 particles with both positive and negative spectra were collected and characterized in combination with the adaptive resonance theory neural network algorithm(ART-2a). Eight types of particles were classified: dust particles(dust, 8.1%), elemental carbon(EC, 29.0%), organic carbon(OC, 18.0%), EC and OC combined particles(ECOC, 9.5%),Na-K containing particles(Na K, 7.9%), K-containing particles(K, 21.8%), organic nitrogen and potassium containing particles(KCN, 2.3%), and metal-containing particles(metal,3.6%). Three haze pollution events(P1, P2, P3) and one clean period(clean) were analyzed,based on the mass and number concentration of PM_(2.5)and the back trajectory results from the hybrid single particle Lagrangian integrated trajectory model(Hysplit-4 model). Results showed that EC, OC and K were the major components of single particles during the three haze pollution periods, which showed clearly increased ratios compared with those in the clean period. Results from the mixing state of secondary species of different types of particles showed that sulfate and nitrate were more readily mixed with carbon-containing particles during haze pollution episodes than in clean periods. 展开更多
关键词 Single particle mass spectrometry haze pollution Mixing state
原文传递
Chemical characteristics of PM_(2.5) during haze episodes in the urban of Fuzhou,China 被引量:19
2
作者 Fuwang Zhang Lingling Xu +5 位作者 Jinsheng Chen Xiaoqiu Chen Zhenchuan Niu Tong Lei Chunming Li Jinping Zhao 《Particuology》 SCIE EI CAS CSCD 2013年第3期264-272,共9页
Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (january 2008). The conce... Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (january 2008). The concentrations, distributions, and sources of polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), and water soluble inorganic ions (WSIls) were determinated. The results showed that the concentrations of PM2.s, PAHs, OC, EC, and WSIIs were in the orders of haze 〉 normal and winter〉 summer. The dominant PAHs of PM2.s in Fuzhou were Fluo, Pyr, Chr, BbF, BkF, BaP, BghiP, and IcdP, which represented about 80.0% of the total PAHs during different sampling periods. The BaPeq concentrations of ^-~PAHs were 0.78, 0.99, 1.22, and 2.43 ng/m3 in summer normal, summer haze, winter normal, and winter haze, respectively. Secondary pollutants (SO42 , NO3 , NH4*, and OC) were the major chemical compositions of PM2.5, accounting for 69.0%, 55.1%, 63.4%, and 64.9% of PM2.s mass in summer normal, summer haze, winter normal, and winter haze, respectively. Correspondingly, secondary organic carbon (SOC) in Fuzhou accounted for 20.1%, 48.6%, 24.5%, and 50.5% of OC. The average values of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were higher in haze days (0.08 and 0.27) than in normal days (0.05 and 0.22). Higher OC/EC ratios were also found in haze days (5.0) than in normal days (3.3). Correlation analysis demonstrated that visibility had positive correlations with wind speed, and neg- ative correlations with relative humidity and major air pollutants. Overall, the enrichments of PM2.5, OC, EC, SO42 ,andNO3 promoted haze formation. Furthermore, the diagnostic ratios of IcdP/(IcdP + BghiP), lcdP/BghiP, OC/EC, and NO3 /SO42 indicated that vehicle exhaust and coal consumption were the main sources of pollutants in Fuzhou. 展开更多
关键词 Fine particles haze Polycyclic aromatic hydrocarbons Organic carbon Elemental carbon Water soluble inorganic ions
原文传递
Haze insights and mitigation in China: An overview 被引量:12
3
作者 Xuliang Zhuang Yuesi Wang +7 位作者 Hong He Jianguo Liu Xinming Wang Tingyu Zhu Maofa Ge Ju Zhou Guiqian Tang Jinzhu Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第1期2-12,共11页
The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also s... The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5. 展开更多
关键词 haze secondary aerosols size distribution particles chemical composition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部