Virtual reality(VR) training technology in the mining industry is a new field of research and utilization.The successful application of VR training system is critical to mine safety and production. Through the statist...Virtual reality(VR) training technology in the mining industry is a new field of research and utilization.The successful application of VR training system is critical to mine safety and production. Through the statistics of the current research and applications of VR training systems in mining industry, all the input/output devices are classified. Based on the classifications of the input/output devices that are used in the VR system, the current VR training systems for the mining industry could be divided into three types: screen-based general type, projector-based customized type, and head-mounted display(HMD)-based intuitive type. By employing a VR headset, a smartphone and a leap motion device, an HMDbased intuitive type VR training system prototype for drilling in underground mines has been developed.Ten trainees tried both the HMD-based intuitive system and the screen-based general control system to compare the experiences and training effects. The results show that the HMD-based system can give a much better user experience and is easy to use. Three of the five components of a VR training system,namely, the user, the tasks, and software and database should be given more attention in future research.With more available technologies of input and output devices, VR engines, and system software, the VR training system will eventually yield much better training results, and will play a more important role in as a training tool for mine safety.展开更多
Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technolo...Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technology in RPD design and development. The review includes the principles and applications of four theories, e. g., the Maxwellian view and its modified modality and the monocular and binocular depth cues of stereoscopic objects in the physiology of the human visual system. To support the Maxwellian view and achieve retinal projec- tion systems with depth cues, results of previous design works were summarized using different methods and their advantages and disadvantages are analyzed. With an extremely long focal depth, a prototype of a full-color stereoscopic see-through RPD system was discussed. Finally, a brief outlook of the future development trends and applications of the RPDs was presented展开更多
A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions i...A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.展开更多
The efficiency balance phenomenon for see-through head-mounted displays with different microstructure con- ditions can be found both theoretically and using optical simulation software. A simple mathematical calculati...The efficiency balance phenomenon for see-through head-mounted displays with different microstructure con- ditions can be found both theoretically and using optical simulation software. A simple mathematical calculation is used to determine the relationship between the real image (see-through function) energy and the virtual image energy. The simulation is based on factors taken from previous research studies. It is found that the balance value of the optical efficiency remains almost constant (66.63% to 67.38%) under different microstructure conditions. In addition, suitable conditions for the microstructures in see-through head-mounted displays for daily applications can be predicted.展开更多
Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by ...Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.展开更多
A new compact XGA projection is designed with three 0.99" liquid crystal panels. By using 275W UHP lamp, above 3000 ANSI lumens could be achieved with the uniformity of 85%. The color temperature is 6742K.
To improve and develop education systems,the communication between instructors and learners in a class during the learning process is of utmost importance.Currently the presentations of 3D models using mixed reality(M...To improve and develop education systems,the communication between instructors and learners in a class during the learning process is of utmost importance.Currently the presentations of 3D models using mixed reality(MR)technology can be used to avoid misinterpretations of oral and 2D model presentations.As an independent concept and MR applications,MR combines the excellent of each virtual reality(VR)and augmented reality(AR).This work aims to present the descriptions of MR systems,which include its devices,applications,and literature reviews and proposes computer vision tracking using the AR Toolkit Tracking Library.The focus of this work will be on creating 3D models and implementing in Unity 3D using the Vuforia SDK platform to develop VR and AR applications for architectural presentations.展开更多
Spatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information.Upon data acquisition...Spatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information.Upon data acquisition,one major hurdle is the subsequent interpretation and visualization of the datasets acquired.To address this challenge,VR-Cardiomics is presented,which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets.By implementing the system in two separate immersive environments,fish tank virtual reality(FTVR)and head-mounted display virtual reality(HMD-VR),biologists can interact with the data in novel ways not previously possible,such as visually exploring the gene expression patterns of an organ,and comparing genes based on their 3D expression profiles.Further,a biologist-driven use-case is presented,in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.展开更多
基金funded by the ‘‘twelfth five” National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAK10B00)
文摘Virtual reality(VR) training technology in the mining industry is a new field of research and utilization.The successful application of VR training system is critical to mine safety and production. Through the statistics of the current research and applications of VR training systems in mining industry, all the input/output devices are classified. Based on the classifications of the input/output devices that are used in the VR system, the current VR training systems for the mining industry could be divided into three types: screen-based general type, projector-based customized type, and head-mounted display(HMD)-based intuitive type. By employing a VR headset, a smartphone and a leap motion device, an HMDbased intuitive type VR training system prototype for drilling in underground mines has been developed.Ten trainees tried both the HMD-based intuitive system and the screen-based general control system to compare the experiences and training effects. The results show that the HMD-based system can give a much better user experience and is easy to use. Three of the five components of a VR training system,namely, the user, the tasks, and software and database should be given more attention in future research.With more available technologies of input and output devices, VR engines, and system software, the VR training system will eventually yield much better training results, and will play a more important role in as a training tool for mine safety.
文摘Retinal projection displays (RPDs) are an important development direction for head-mounted dis- plays (HMDs). This paper reviews the literature on optical engineering aspects based on the data on advanced technology in RPD design and development. The review includes the principles and applications of four theories, e. g., the Maxwellian view and its modified modality and the monocular and binocular depth cues of stereoscopic objects in the physiology of the human visual system. To support the Maxwellian view and achieve retinal projec- tion systems with depth cues, results of previous design works were summarized using different methods and their advantages and disadvantages are analyzed. With an extremely long focal depth, a prototype of a full-color stereoscopic see-through RPD system was discussed. Finally, a brief outlook of the future development trends and applications of the RPDs was presented
基金partially supported by the National Basic Research Program of China(No.2013CB328805)the National Science Foundation of China(NSFC,No.61205024,61178038)the National Key Technology R&D Program(No.2012BAH64F03)
文摘A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.
基金supported in part by the Ministry of Science and Technology,Taiwan,project number MOST104-2220-E-009-006in part by the "Aim for the Top University Plan" of the National Chiao Tung University and the Ministry of Education,Taiwan,China
文摘The efficiency balance phenomenon for see-through head-mounted displays with different microstructure con- ditions can be found both theoretically and using optical simulation software. A simple mathematical calculation is used to determine the relationship between the real image (see-through function) energy and the virtual image energy. The simulation is based on factors taken from previous research studies. It is found that the balance value of the optical efficiency remains almost constant (66.63% to 67.38%) under different microstructure conditions. In addition, suitable conditions for the microstructures in see-through head-mounted displays for daily applications can be predicted.
基金(No. 2004C31107) supported by the Science and Technology Program of Zhejiang Province, China
文摘Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.
文摘A new compact XGA projection is designed with three 0.99" liquid crystal panels. By using 275W UHP lamp, above 3000 ANSI lumens could be achieved with the uniformity of 85%. The color temperature is 6742K.
文摘To improve and develop education systems,the communication between instructors and learners in a class during the learning process is of utmost importance.Currently the presentations of 3D models using mixed reality(MR)technology can be used to avoid misinterpretations of oral and 2D model presentations.As an independent concept and MR applications,MR combines the excellent of each virtual reality(VR)and augmented reality(AR).This work aims to present the descriptions of MR systems,which include its devices,applications,and literature reviews and proposes computer vision tracking using the AR Toolkit Tracking Library.The focus of this work will be on creating 3D models and implementing in Unity 3D using the Vuforia SDK platform to develop VR and AR applications for architectural presentations.
基金This project was partly funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 251654672-TRR 161by DFG Center of Excellence 2117“Centre for the Advanced Study of Collective Behaviour”(ID 422037984)M.R.was funded by an NH&MRC/Heart Foundation Career Development Fellowship and by an Australian Research Council Discovery Project DP190102771 Grant.
文摘Spatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information.Upon data acquisition,one major hurdle is the subsequent interpretation and visualization of the datasets acquired.To address this challenge,VR-Cardiomics is presented,which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets.By implementing the system in two separate immersive environments,fish tank virtual reality(FTVR)and head-mounted display virtual reality(HMD-VR),biologists can interact with the data in novel ways not previously possible,such as visually exploring the gene expression patterns of an organ,and comparing genes based on their 3D expression profiles.Further,a biologist-driven use-case is presented,in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.