A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical ha...A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.展开更多
Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability a...Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability are required in a near-field HRTF measurement. Hence, there is no reference which intents on solving the measuring difficulties of near-field HRTF for human subjects. In present work, an efficient near-field HRTF measurement system based on computer control is designed and implemented, and a fast calibration method for the system is proposed to first solve the measurement of near-field HRTF for human subjects. The efficiency of measurement is enhanced by a comprehensive design on the acoustic, electronic and mechanical parts of the system. And the accuracy and repeatability of the measurement are greatly im- proved by carefully calibrating the positions of sound source, subject and binaural microphones. This system is suitable for near-field HRTF measurement at various source distances within 1.0 m, for both human subject and artificial head. The time costs of HRTF measurement at a single sound source distance and full directions has been reduced to less than 20 minutes. The measurement results indicate that the accuracy of the system satisfies the actual requirements. The system is applicable to scientific research and can be used to establish an individualized near-field HRTF database for human subjects.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineerin...Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineering situations as it identifies the frequency of waves which will be favourably transmitted.Two different numerical methods are used for this study,adopting the finite difference method and the combined discrete element-finite difference method.The numerical models are validated by replicating results from previous studies.The two methods are found to behave similarly and show the same resonance effects;one operating at low frequency and the other operating at relatively high frequency.These resonance effects are interpreted in terms of simple physical systems and analytical equations are derived to predict the resonant frequencies of complex rock masses.Low frequency resonance is shown to be generated by a system synonymous with masses between springs,described as spring resonance,with an equal number of resonant frequencies as the number of blocks.High frequency resonance is generated through superposition of multiple reflected waves developing standing waves within intact blocks,described as superposition resonance.While resonance through superposition has previously been identified,resonance based on masses between springs has not been previously identified in jointed rocks.The findings of this study have implications for future analysis of multiple jointed rock masses,showing that a wave travelling through such materials can induce other modes of propagation of waves,i.e.spring resonance.展开更多
To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may i...To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may influence the accuracy of measurement.On the other hand,the directivity of sound source could induce measurement error.Therefore,a model consisting of two spherical sound sources with approximate omni-directivity and a rigid-spherical head is proposed to evaluate the errors in HRTF measurement caused by multiple scattering between sources.An example of analysis using multipole re-expansion indicates that the error of ipsilateral HRTFs are within the bound of±1.0 dB below a frequency of 20 kHz,provided that the sound source radius does not exceed 0.025 m,the source distance relative to head center is not less than 0.5 m,and the angular interval between two adjacent sources is not less than 20 degrees.Similar conclusions under different conditions can also be analyzed and discussed by using this calculation method.Furthermore,the results are verified by measurements of HRTFs for a rigid sphere and a KEMAR artificial head.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of...Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of temperature and water vapor mixing ratio component weighting functions are derived by applying one term variation method to RTE with surface emissivity and solar reflectivity contained. Retrivals of temperature and water vapor mixing ratio profiles from simulated Atmospheric Infrared Sounder (AIRS) observations with surface emissivity and solar reflectivity are presented.展开更多
Electromagnetic pulse(EMP)is a kind of transient electromagnetic phenomenon with short rise time of the leading edge and wide spectrum,which usually disrupts communications and damages electronic equipment and system....Electromagnetic pulse(EMP)is a kind of transient electromagnetic phenomenon with short rise time of the leading edge and wide spectrum,which usually disrupts communications and damages electronic equipment and system.It is challenging for an EMP sensor to measure a wideband electromagnetic pulse without distortion for the whole spectrum.Therefore,analyzing the distortion of EMP measurement is crucial to evaluating the sensor distortion characteristics and correcting the measurement results.Waveform fidelity is usually employed to evaluate the distortion of an antenna.However,this metric depends on specific signal waveforms,thus is unsuitable for evaluating and analyzing the distortion of EMP sensors.In this paper,an associated-hermite-function based distortion analysis method including system transfer matrices and distortion rates is proposed,which is general and independent from individual waveforms.The system transfer matrix and distortion rate can be straightforwardly calculated by the signal orthogonal transformation coefficients using associated-hermite functions.Distortion of a sensor vs.frequency is then visualized via the system transfer matrix,which is convenient in quantitative analysis of the distortion.Measurement of a current probe,a coaxial pulse voltage probe and a B-field sensor were performed,based on which the feasibility and effectiveness of the proposed distortion analysis method is successfully verified.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a...A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.展开更多
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m...Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.展开更多
Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PC...Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PCOS who met the study criteria were screened according to the inclusion criteria.A total of 32 patients with obese PCOS were recruited into the study group,and 39 patients with non-obese PCOS were recruited into the control group.The general data(age,body mass index,and years of infertility),insulin resistance index(HOMA-IR),follicle-stimulating hormone(FSH),luteinizing hormone(LH),granulosa cell mitochondrial function,and IVF-ET outcome of patients in the study group and control group were retrospectively analyzed.Results:The differences in age and years of infertility between the study group and the control group were insignificant(P>0.05),and the body mass index(BMI)of the study group and control group was 30.5±1.24 kg/m2 and 22.3±1.12 kg/m2,respectively,in which the difference was statistically significant(P<0.05);the HOMA-IR of the study group was significantly higher than that of the control group(P<0.05);the reactive oxygen species(ROS)in the study group was significantly higher than that in the control group(P<0.05),and the ATP content in the study group was significantly lower than that in the control group(P<0.05);comparing the FSH and LH levels between the two groups,the difference was not statistically significant(P>0.05);the rate of IVF-ET failure was significantly higher in the study group than in the control group.Conclusion:PCOS is a complex endocrine disorder,and obesity is one of the independent risk factors for the development of PCOS.展开更多
We have collected the data of variometers in period from 1972 through 1984 at Changli and Baijiatuan stations. The results calculated from 19 groups of data show: 1) There are no significant anomalies of A...We have collected the data of variometers in period from 1972 through 1984 at Changli and Baijiatuan stations. The results calculated from 19 groups of data show: 1) There are no significant anomalies of A, B at Baijiatuan and that of B at Changli, but there are evident anomalous changes for A u, A v at Changli station. This result basically agrees to the a, b calculated using the method of measuring magnetograms, which demonstrates that the anomalies limited in the aftershock area and its neighbouring regions. 2) There are some changes of the inter station transfer functions of C u, C v, F u, F v before Tangshan earthquake, and the changes of the image parts C v, F v are more obvious, which is in agreement with the research results for Hualian earthquake. However, according to the results of Carlisle M =5.0 earthquake by Beamish(1982), the real parts F u, C u change more significantly.展开更多
Trees have adapted to their local climates, but with changes in the climate, they may currently or in the near future occupy climates that are sub-optimal for growth and survival. The goal of current reforestation is ...Trees have adapted to their local climates, but with changes in the climate, they may currently or in the near future occupy climates that are sub-optimal for growth and survival. The goal of current reforestation is therefore to establish a new generation of trees with growth adapted to the future climate(s). Here, we present preliminary data of a study assessing the effects of seed source and transfer potential of white birch populations. Seeds from twenty-five white birch (Betula papyrifera Marsh.) populations collected acrossCanadawere grown in the greenhouse and observed for emergence time, germination and growth. The seedlings were later planted in a common garden. After one year, the seedlings were measured for height, root-collar diameter (RCD) and survival rate and average volume per seedling calculated. Transfer functions were used to estimate the climatic distance from which populations may be transferred to the test site. There was a significant effect of population on all growth variables. Initial height was positively correlated with 1-year height and survival. Germination rate negatively correlated with emergence time. Principal component analysis showed effects of seed origin on performances of the populations in the common garden. Summer temperature was the best predictor of the transfer distance.展开更多
Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part ...Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.展开更多
Accurately measuring precipitation is integral for understanding water cycle processes and assessing climate change in the Qinghai–Tibet Plateau(QTP).The Geonor T-200B weighing precipitation gauge with a single Alter...Accurately measuring precipitation is integral for understanding water cycle processes and assessing climate change in the Qinghai–Tibet Plateau(QTP).The Geonor T-200B weighing precipitation gauge with a single Alter shield(Geonor)and the Chinese standard precipitation gauge(CSPG)are widely used for measuring precipitation in the QTP.However,their measurements need to be adjusted for wetting loss,evaporation loss and windinduced undercatch.Four existing transfer functions for adjusting the Geonor-recorded and three transfer functions for adjusting the CSPG-recorded precipitation at hourly,daily or event scale has been proposed based on the precipitation intercomparison experiments conducted at a single site in different regions.Two latest transfer functions for the Geonor(which are referred to as K2017a and K2017b)at the half-hour time scale based on the precipitation intercomparison experiments at multiple stations in the northern hemisphere were provided in the World Meteorological Organization Solid Precipitation Intercomparison Experiment.However,the applicability of these transfer functions in the QTP has not been evaluated.Therefore,the current study carried out a precipitation measurement intercomparison experiment between August 2018 and September 2020 at a site in Beiluhe in central QTP.The performance of these transfer functions at this site was also evaluated on the basis of mean bias(MB),root mean squared error(RMSE)and relative total catch(RTC).The results are as follows:First,the unadjusted RTC values of the Geonor for rain,mixed(snow mixed with rain),snow and hail are 92.06%,85.35%,64.11% and 91.82%,respectively,and the unadjusted RTC values of the CSPG for the same precipitation types are 92.59%,81.32%,46.43% and 95.56%,respectively.Second,K2017a has the most accurate adjustment results for the Geonor-recorded snow and mixed precipitation at the half-hour time scale,and the post-adjustment RTC values increased to 98.25% and 98.23%,respectively.M2007e,an event-based transfer function,was found to have the most accurate adjustment results for the Geonorrecorded snow precipitation at the event scale,and the post-adjustment RTC value increased to 96.36%.Third,the existing transfer functions for CSPG underestimate snowfall,while overestimating rainfall.Fourth,hail is a significant precipitation type in central QTP.The catch efficiency of hail precipitation and the temperature when hail precipitation occurs are close to those of rain;moreover,the transfer functions for rain are suitable for hail as well.展开更多
AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
Establishing a suitable closed-loop transfer function model for the grid-connected PMSG system is the key basis in performing inter-harmonic characteristics analysis.Multiple closed-loop transfer functions can be cons...Establishing a suitable closed-loop transfer function model for the grid-connected PMSG system is the key basis in performing inter-harmonic characteristics analysis.Multiple closed-loop transfer functions can be constructed when different components of the converter controller are taken into account.However,the effect of different components of the converter controller on inter-harmonic stability analysis is not clear.In this paper,the complete transfer function,considering different loops,is first given.Based on the complete closed-loop transfer function,the DC-link,PLL and voltage forward-feed are removed step by step to derive different closed-loop transfer functions.The inter-harmonic related poles of different closed-loop transfer functions are further calculated to analyze the effect of closedloop transfer functions on inter-harmonic characteristics analysis.Finally,by performing time domain simulation,the correctness of the theoretical analysis results is verified.The results show that under the conditions of a weak AC system,each loop of the converter control system will reduce the stability of the interharmonic in the sub-synchronous frequency range and influence the inter-harmonic oscillation frequency.The transfer function needs to consider the influence of each loop to accurately calculate the inter-harmonic stability of the system.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
基金Supported by Shanghai Natural Science Foundation, Shanghai Leading Academic Discipline Project, and STCSM of China (No. 08ZR1408300, S30108, and 08DZ2231100)
文摘A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.
基金supported by the National Natural Science Foundation of China(11104082,11574090)Fundamental Research Funds for the Central Universities of South China University of Technology(2015ZZ135)
文摘Near-field head-related transfer functions (HRTFs) are essential to scientific re- searches of binaural hearing and practical applications of virtual auditory display. High ef- ficiency, accuracy and repeatability are required in a near-field HRTF measurement. Hence, there is no reference which intents on solving the measuring difficulties of near-field HRTF for human subjects. In present work, an efficient near-field HRTF measurement system based on computer control is designed and implemented, and a fast calibration method for the system is proposed to first solve the measurement of near-field HRTF for human subjects. The efficiency of measurement is enhanced by a comprehensive design on the acoustic, electronic and mechanical parts of the system. And the accuracy and repeatability of the measurement are greatly im- proved by carefully calibrating the positions of sound source, subject and binaural microphones. This system is suitable for near-field HRTF measurement at various source distances within 1.0 m, for both human subject and artificial head. The time costs of HRTF measurement at a single sound source distance and full directions has been reduced to less than 20 minutes. The measurement results indicate that the accuracy of the system satisfies the actual requirements. The system is applicable to scientific research and can be used to establish an individualized near-field HRTF database for human subjects.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)(EP/R513258/1).
文摘Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineering situations as it identifies the frequency of waves which will be favourably transmitted.Two different numerical methods are used for this study,adopting the finite difference method and the combined discrete element-finite difference method.The numerical models are validated by replicating results from previous studies.The two methods are found to behave similarly and show the same resonance effects;one operating at low frequency and the other operating at relatively high frequency.These resonance effects are interpreted in terms of simple physical systems and analytical equations are derived to predict the resonant frequencies of complex rock masses.Low frequency resonance is shown to be generated by a system synonymous with masses between springs,described as spring resonance,with an equal number of resonant frequencies as the number of blocks.High frequency resonance is generated through superposition of multiple reflected waves developing standing waves within intact blocks,described as superposition resonance.While resonance through superposition has previously been identified,resonance based on masses between springs has not been previously identified in jointed rocks.The findings of this study have implications for future analysis of multiple jointed rock masses,showing that a wave travelling through such materials can induce other modes of propagation of waves,i.e.spring resonance.
基金funded by National Natural Science Foundation of China(No.11574090)Natural Science Foundation of Guangdong Province(No.2018B030311025).
文摘To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may influence the accuracy of measurement.On the other hand,the directivity of sound source could induce measurement error.Therefore,a model consisting of two spherical sound sources with approximate omni-directivity and a rigid-spherical head is proposed to evaluate the errors in HRTF measurement caused by multiple scattering between sources.An example of analysis using multipole re-expansion indicates that the error of ipsilateral HRTFs are within the bound of±1.0 dB below a frequency of 20 kHz,provided that the sound source radius does not exceed 0.025 m,the source distance relative to head center is not less than 0.5 m,and the angular interval between two adjacent sources is not less than 20 degrees.Similar conclusions under different conditions can also be analyzed and discussed by using this calculation method.Furthermore,the results are verified by measurements of HRTFs for a rigid sphere and a KEMAR artificial head.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
文摘Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of temperature and water vapor mixing ratio component weighting functions are derived by applying one term variation method to RTE with surface emissivity and solar reflectivity contained. Retrivals of temperature and water vapor mixing ratio profiles from simulated Atmospheric Infrared Sounder (AIRS) observations with surface emissivity and solar reflectivity are presented.
基金Research Project of High-Level Talents of Jiangsu Police Institute(No.2911118010).
文摘Electromagnetic pulse(EMP)is a kind of transient electromagnetic phenomenon with short rise time of the leading edge and wide spectrum,which usually disrupts communications and damages electronic equipment and system.It is challenging for an EMP sensor to measure a wideband electromagnetic pulse without distortion for the whole spectrum.Therefore,analyzing the distortion of EMP measurement is crucial to evaluating the sensor distortion characteristics and correcting the measurement results.Waveform fidelity is usually employed to evaluate the distortion of an antenna.However,this metric depends on specific signal waveforms,thus is unsuitable for evaluating and analyzing the distortion of EMP sensors.In this paper,an associated-hermite-function based distortion analysis method including system transfer matrices and distortion rates is proposed,which is general and independent from individual waveforms.The system transfer matrix and distortion rate can be straightforwardly calculated by the signal orthogonal transformation coefficients using associated-hermite functions.Distortion of a sensor vs.frequency is then visualized via the system transfer matrix,which is convenient in quantitative analysis of the distortion.Measurement of a current probe,a coaxial pulse voltage probe and a B-field sensor were performed,based on which the feasibility and effectiveness of the proposed distortion analysis method is successfully verified.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters.
文摘Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
基金Baoding Science and Technology Program Project(Grant No.2241ZF120)Hebei Health Care Commission Scientific Research Funding Project(Grant No.20170827)+1 种基金Funding Project of Affiliated Hospital of Hebei University(Grant No.2016Q016)Funding Project of Affiliated Hospital of Hebei University(No.2022QC66).
文摘Objective:To investigate the effect of abnormal ovarian granulosa cell metabolism on in vitro fertilization and embryo transfer(IVF-ET)outcomes in obese polycystic ovary syndrome(PCOS)patients.Methods:Patients with PCOS who met the study criteria were screened according to the inclusion criteria.A total of 32 patients with obese PCOS were recruited into the study group,and 39 patients with non-obese PCOS were recruited into the control group.The general data(age,body mass index,and years of infertility),insulin resistance index(HOMA-IR),follicle-stimulating hormone(FSH),luteinizing hormone(LH),granulosa cell mitochondrial function,and IVF-ET outcome of patients in the study group and control group were retrospectively analyzed.Results:The differences in age and years of infertility between the study group and the control group were insignificant(P>0.05),and the body mass index(BMI)of the study group and control group was 30.5±1.24 kg/m2 and 22.3±1.12 kg/m2,respectively,in which the difference was statistically significant(P<0.05);the HOMA-IR of the study group was significantly higher than that of the control group(P<0.05);the reactive oxygen species(ROS)in the study group was significantly higher than that in the control group(P<0.05),and the ATP content in the study group was significantly lower than that in the control group(P<0.05);comparing the FSH and LH levels between the two groups,the difference was not statistically significant(P>0.05);the rate of IVF-ET failure was significantly higher in the study group than in the control group.Conclusion:PCOS is a complex endocrine disorder,and obesity is one of the independent risk factors for the development of PCOS.
文摘We have collected the data of variometers in period from 1972 through 1984 at Changli and Baijiatuan stations. The results calculated from 19 groups of data show: 1) There are no significant anomalies of A, B at Baijiatuan and that of B at Changli, but there are evident anomalous changes for A u, A v at Changli station. This result basically agrees to the a, b calculated using the method of measuring magnetograms, which demonstrates that the anomalies limited in the aftershock area and its neighbouring regions. 2) There are some changes of the inter station transfer functions of C u, C v, F u, F v before Tangshan earthquake, and the changes of the image parts C v, F v are more obvious, which is in agreement with the research results for Hualian earthquake. However, according to the results of Carlisle M =5.0 earthquake by Beamish(1982), the real parts F u, C u change more significantly.
文摘Trees have adapted to their local climates, but with changes in the climate, they may currently or in the near future occupy climates that are sub-optimal for growth and survival. The goal of current reforestation is therefore to establish a new generation of trees with growth adapted to the future climate(s). Here, we present preliminary data of a study assessing the effects of seed source and transfer potential of white birch populations. Seeds from twenty-five white birch (Betula papyrifera Marsh.) populations collected acrossCanadawere grown in the greenhouse and observed for emergence time, germination and growth. The seedlings were later planted in a common garden. After one year, the seedlings were measured for height, root-collar diameter (RCD) and survival rate and average volume per seedling calculated. Transfer functions were used to estimate the climatic distance from which populations may be transferred to the test site. There was a significant effect of population on all growth variables. Initial height was positively correlated with 1-year height and survival. Germination rate negatively correlated with emergence time. Principal component analysis showed effects of seed origin on performances of the populations in the common garden. Summer temperature was the best predictor of the transfer distance.
文摘Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.
基金supported primarily by the National Natural Sciences Foundation of China(42171467,42001060 and 41705139)Natural Science Foundation of Qinghai Province(2021-ZJ947Q)。
文摘Accurately measuring precipitation is integral for understanding water cycle processes and assessing climate change in the Qinghai–Tibet Plateau(QTP).The Geonor T-200B weighing precipitation gauge with a single Alter shield(Geonor)and the Chinese standard precipitation gauge(CSPG)are widely used for measuring precipitation in the QTP.However,their measurements need to be adjusted for wetting loss,evaporation loss and windinduced undercatch.Four existing transfer functions for adjusting the Geonor-recorded and three transfer functions for adjusting the CSPG-recorded precipitation at hourly,daily or event scale has been proposed based on the precipitation intercomparison experiments conducted at a single site in different regions.Two latest transfer functions for the Geonor(which are referred to as K2017a and K2017b)at the half-hour time scale based on the precipitation intercomparison experiments at multiple stations in the northern hemisphere were provided in the World Meteorological Organization Solid Precipitation Intercomparison Experiment.However,the applicability of these transfer functions in the QTP has not been evaluated.Therefore,the current study carried out a precipitation measurement intercomparison experiment between August 2018 and September 2020 at a site in Beiluhe in central QTP.The performance of these transfer functions at this site was also evaluated on the basis of mean bias(MB),root mean squared error(RMSE)and relative total catch(RTC).The results are as follows:First,the unadjusted RTC values of the Geonor for rain,mixed(snow mixed with rain),snow and hail are 92.06%,85.35%,64.11% and 91.82%,respectively,and the unadjusted RTC values of the CSPG for the same precipitation types are 92.59%,81.32%,46.43% and 95.56%,respectively.Second,K2017a has the most accurate adjustment results for the Geonor-recorded snow and mixed precipitation at the half-hour time scale,and the post-adjustment RTC values increased to 98.25% and 98.23%,respectively.M2007e,an event-based transfer function,was found to have the most accurate adjustment results for the Geonorrecorded snow precipitation at the event scale,and the post-adjustment RTC value increased to 96.36%.Third,the existing transfer functions for CSPG underestimate snowfall,while overestimating rainfall.Fourth,hail is a significant precipitation type in central QTP.The catch efficiency of hail precipitation and the temperature when hail precipitation occurs are close to those of rain;moreover,the transfer functions for rain are suitable for hail as well.
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.
基金supported by Research Project Huadong Engineering Corporation Limited,and National Natural Science Foundation of China(U22B20100,52321004).
文摘Establishing a suitable closed-loop transfer function model for the grid-connected PMSG system is the key basis in performing inter-harmonic characteristics analysis.Multiple closed-loop transfer functions can be constructed when different components of the converter controller are taken into account.However,the effect of different components of the converter controller on inter-harmonic stability analysis is not clear.In this paper,the complete transfer function,considering different loops,is first given.Based on the complete closed-loop transfer function,the DC-link,PLL and voltage forward-feed are removed step by step to derive different closed-loop transfer functions.The inter-harmonic related poles of different closed-loop transfer functions are further calculated to analyze the effect of closedloop transfer functions on inter-harmonic characteristics analysis.Finally,by performing time domain simulation,the correctness of the theoretical analysis results is verified.The results show that under the conditions of a weak AC system,each loop of the converter control system will reduce the stability of the interharmonic in the sub-synchronous frequency range and influence the inter-harmonic oscillation frequency.The transfer function needs to consider the influence of each loop to accurately calculate the inter-harmonic stability of the system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.